Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.509 IF 5.509
  • IF 5-year value: 5.689 IF 5-year 5.689
  • CiteScore value: 5.44 CiteScore 5.44
  • SNIP value: 1.519 SNIP 1.519
  • SJR value: 3.032 SJR 3.032
  • IPP value: 5.37 IPP 5.37
  • h5-index value: 86 h5-index 86
  • Scimago H index value: 161 Scimago H index 161
Volume 10, issue 21 | Copyright
Atmos. Chem. Phys., 10, 10399-10420, 2010
https://doi.org/10.5194/acp-10-10399-2010
© Author(s) 2010. This work is distributed under
the Creative Commons Attribution 3.0 License.

  05 Nov 2010

05 Nov 2010

Global evaluation of the Collection 5 MODIS dark-target aerosol products over land

R. C. Levy1,2, L. A. Remer2, R. G. Kleidman1,2, S. Mattoo1,2, C. Ichoku2, R. Kahn2, and T. F. Eck2,3 R. C. Levy et al.
  • 1Science Systems and Applications Inc., Lanham, MD USA
  • 2NASA/Goddard Space Flight Center, Greenbelt, MD USA
  • 3Goddard Earth Science and Technology Center, Baltimore, MD USA

Abstract. NASA's MODIS sensors have been observing the Earth from polar orbit, from Terra since early 2000 and from Aqua since mid 2002. We have applied a consistent retrieval and processing algorithm to both sensors to derive the Collection 5 (C005) dark-target aerosol products over land. Here, we validate the MODIS along-orbit Level 2 products by comparing to quality assured Level 2 AERONET sunphotometer measurements at over 300 sites. From 85 463 collocations, representing mutually cloud-free conditions, we find that >66% (one standard deviation) of MODIS-retrieved aerosol optical depth (AOD) values compare to AERONET-observed values within an expected error (EE) envelope of ±(0.05 + 15%), with high correlation (R = 0.9). Thus, the MODIS AOD product is validated and quantitative. However, even though we can define EEs for MODIS-reported Ångström exponent and fine AOD over land, these products do not have similar physical validity. Although validated globally, MODIS-retrieved AOD does not fall within the EE envelope everywhere. We characterize some of the residual biases that are related to specific aerosol conditions, observation geometry, and/or surface properties, and relate them to situations where particular MODIS algorithm assumptions are violated. Both Terra's and Aqua's–retrieved AOD are similarly comparable to AERONET, however, Terra's global AOD bias changes with time, overestimating (by ~0.005) before 2004, and underestimating by similar magnitude after. This suggests how small calibration uncertainties of <2% can lead to spurious conclusions about long-term aerosol trends.

Download & links
Publications Copernicus
Download
Citation
Share