New perspectives on Air-Ice Chemical Interactions (AICI) (ACP/ESSD inter-journal SI)(ACP/ESSD inter-journal SI)
New perspectives on Air-Ice Chemical Interactions (AICI) (ACP/ESSD inter-journal SI)(ACP/ESSD inter-journal SI)
Editor(s): V. F. McNeill, E. Wolff, T. Bartels-Rausch, and H. Pfeiffenberger Special issue jointly organized between Atmospheric Chemistry and Physics and Earth System Science Data
Ice in the environment, from ice particles in clouds, to sea ice and snow at the Earth’s surface, has a profound influence on atmospheric composition and climate. Understanding and quantifying the chemical interactions of ice and snow with trace gases in the atmosphere is a major challenge in atmospheric chemistry. A quantitative, mechanistic understanding of trace gas–ice interactions is critical for predicting the effects of climate change on atmospheric composition, for the interpretation of ice core chemical records, and for modeling atmospheric chemistry. There are significant gaps in our current understanding of air–ice chemical interactions, including uncertainty regarding the microphysical location of species upon uptake, rates and mechanisms of chemical processes taking place in/on ice, the role of interfacial layers at the ice surface, and the role of biological activity.

This special issue is comprised of a series of review articles originating from the 3rd Workshop on Air-Ice Chemical Interactions (AICI), which was held at Columbia University in New York, NY, June 6–8, 2011.

Download citations of all papers

29 Jul 2015
X-ray computed microtomography of sea ice – comment on "A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)
R. W. Obbard
Atmos. Chem. Phys., 15, 8457–8458, https://doi.org/10.5194/acp-15-8457-2015,https://doi.org/10.5194/acp-15-8457-2015, 2015
Short summary
12 Feb 2014
A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow
T. Bartels-Rausch, H.-W. Jacobi, T. F. Kahan, J. L. Thomas, E. S. Thomson, J. P. D. Abbatt, M. Ammann, J. R. Blackford, H. Bluhm, C. Boxe, F. Domine, M. M. Frey, I. Gladich, M. I. Guzmán, D. Heger, Th. Huthwelker, P. Klán, W. F. Kuhs, M. H. Kuo, S. Maus, S. G. Moussa, V. F. McNeill, J. T. Newberg, J. B. C. Pettersson, M. Roeselová, and J. R. Sodeau
Atmos. Chem. Phys., 14, 1587–1633, https://doi.org/10.5194/acp-14-1587-2014,https://doi.org/10.5194/acp-14-1587-2014, 2014
20 Mar 2013
The role of the global cryosphere in the fate of organic contaminants
A. M. Grannas, C. Bogdal, K. J. Hageman, C. Halsall, T. Harner, H. Hung, R. Kallenborn, P. Klán, J. Klánová, R. W. Macdonald, T. Meyer, and F. Wania
Atmos. Chem. Phys., 13, 3271–3305, https://doi.org/10.5194/acp-13-3271-2013,https://doi.org/10.5194/acp-13-3271-2013, 2013
20 Dec 2012
A compilation of tropospheric measurements of gas-phase and aerosol chemistry in polar regions
R. Sander and J. Bottenheim
Earth Syst. Sci. Data, 4, 215–282, https://doi.org/10.5194/essd-4-215-2012,https://doi.org/10.5194/essd-4-215-2012, 2012
24 Oct 2012
Organics in environmental ices: sources, chemistry, and impacts
V. F. McNeill, A. M. Grannas, J. P. D. Abbatt, M. Ammann, P. Ariya, T. Bartels-Rausch, F. Domine, D. J. Donaldson, M. I. Guzman, D. Heger, T. F. Kahan, P. Klán, S. Masclin, C. Toubin, and D. Voisin
Atmos. Chem. Phys., 12, 9653–9678, https://doi.org/10.5194/acp-12-9653-2012,https://doi.org/10.5194/acp-12-9653-2012, 2012
19 Jul 2012
Halogen activation via interactions with environmental ice and snow in the polar lower troposphere and other regions
J. P. D. Abbatt, J. L. Thomas, K. Abrahamsson, C. Boxe, A. Granfors, A. E. Jones, M. D. King, A. Saiz-Lopez, P. B. Shepson, J. Sodeau, D. W. Toohey, C. Toubin, R. von Glasow, S. N. Wren, and X. Yang
Atmos. Chem. Phys., 12, 6237–6271, https://doi.org/10.5194/acp-12-6237-2012,https://doi.org/10.5194/acp-12-6237-2012, 2012
CC BY 4.0