Volume 9, issue 9

Volume 9, issue 9

05 May 2009
Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data
I. M. Ulbrich, M. R. Canagaratna, Q. Zhang, D. R. Worsnop, and J. L. Jimenez
Atmos. Chem. Phys., 9, 2891–2918, https://doi.org/10.5194/acp-9-2891-2009,https://doi.org/10.5194/acp-9-2891-2009, 2009
05 May 2009
Sensitivities of the absorptive partitioning model of secondary organic aerosol formation to the inclusion of water
M. Barley, D. O. Topping, M. E. Jenkin, and G. McFiggans
Atmos. Chem. Phys., 9, 2919–2932, https://doi.org/10.5194/acp-9-2919-2009,https://doi.org/10.5194/acp-9-2919-2009, 2009
06 May 2009
Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation
S.-L. Sihto, H. Vuollekoski, J. Leppä, I. Riipinen, V.-M. Kerminen, H. Korhonen, K. E. J. Lehtinen, M. Boy, and M. Kulmala
Atmos. Chem. Phys., 9, 2933–2947, https://doi.org/10.5194/acp-9-2933-2009,https://doi.org/10.5194/acp-9-2933-2009, 2009
06 May 2009
The potential contribution of organic salts to new particle growth
K. C. Barsanti, P. H. McMurry, and J. N. Smith
Atmos. Chem. Phys., 9, 2949–2957, https://doi.org/10.5194/acp-9-2949-2009,https://doi.org/10.5194/acp-9-2949-2009, 2009
06 May 2009
Increased cloud activation potential of secondary organic aerosol for atmospheric mass loadings
S. M. King, T. Rosenoern, J. E. Shilling, Q. Chen, and S. T. Martin
Atmos. Chem. Phys., 9, 2959–2971, https://doi.org/10.5194/acp-9-2959-2009,https://doi.org/10.5194/acp-9-2959-2009, 2009
07 May 2009
High formation of secondary organic aerosol from the photo-oxidation of toluene
L. Hildebrandt, N. M. Donahue, and S. N. Pandis
Atmos. Chem. Phys., 9, 2973–2986, https://doi.org/10.5194/acp-9-2973-2009,https://doi.org/10.5194/acp-9-2973-2009, 2009
07 May 2009
Assessment of the MODIS Collections C005 and C004 aerosol optical depth products over the Mediterranean basin
C. D. Papadimas, N. Hatzianastassiou, N. Mihalopoulos, M. Kanakidou, B. D. Katsoulis, and I. Vardavas
Atmos. Chem. Phys., 9, 2987–2999, https://doi.org/10.5194/acp-9-2987-2009,https://doi.org/10.5194/acp-9-2987-2009, 2009
11 May 2009
Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: Sensitivity to the phase of the QBO and ENSO
M. A. Thomas, M. A. Giorgetta, C. Timmreck, H.-F. Graf, and G. Stenchikov
Atmos. Chem. Phys., 9, 3001–3009, https://doi.org/10.5194/acp-9-3001-2009,https://doi.org/10.5194/acp-9-3001-2009, 2009
11 May 2009
The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere
Q. Liang, A. R. Douglass, B. N. Duncan, R. S. Stolarski, and J. C. Witte
Atmos. Chem. Phys., 9, 3011–3025, https://doi.org/10.5194/acp-9-3011-2009,https://doi.org/10.5194/acp-9-3011-2009, 2009
11 May 2009
Nocturnal isoprene oxidation over the Northeast United States in summer and its impact on reactive nitrogen partitioning and secondary organic aerosol
S. S. Brown, J. A. deGouw, C. Warneke, T. B. Ryerson, W. P. Dubé, E. Atlas, R. J. Weber, R. E. Peltier, J. A. Neuman, J. M. Roberts, A. Swanson, F. Flocke, S. A. McKeen, J. Brioude, R. Sommariva, M. Trainer, F. C. Fehsenfeld, and A. R. Ravishankara
Atmos. Chem. Phys., 9, 3027–3042, https://doi.org/10.5194/acp-9-3027-2009,https://doi.org/10.5194/acp-9-3027-2009, 2009
12 May 2009
Assessing temporal clear-sky errors in assimilation of satellite CO2 retrievals using a global transport model
K. D. Corbin, A. S. Denning, and N. C. Parazoo
Atmos. Chem. Phys., 9, 3043–3048, https://doi.org/10.5194/acp-9-3043-2009,https://doi.org/10.5194/acp-9-3043-2009, 2009
12 May 2009
Secondary organic aerosol formation from photooxidation of naphthalene and alkylnaphthalenes: implications for oxidation of intermediate volatility organic compounds (IVOCs)
A. W. H. Chan, K. E. Kautzman, P. S. Chhabra, J. D. Surratt, M. N. Chan, J. D. Crounse, A. Kürten, P. O. Wennberg, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 9, 3049–3060, https://doi.org/10.5194/acp-9-3049-2009,https://doi.org/10.5194/acp-9-3049-2009, 2009
13 May 2009
A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum
T. Takemura, M. Egashira, K. Matsuzawa, H. Ichijo, R. O'ishi, and A. Abe-Ouchi
Atmos. Chem. Phys., 9, 3061–3073, https://doi.org/10.5194/acp-9-3061-2009,https://doi.org/10.5194/acp-9-3061-2009, 2009
13 May 2009
Radicals in the marine boundary layer during NEAQS 2004: a model study of day-time and night-time sources and sinks
R. Sommariva, H. D. Osthoff, S. S. Brown, T. S. Bates, T. Baynard, D. Coffman, J. A. de Gouw, P. D. Goldan, W. C. Kuster, B. M. Lerner, H. Stark, C. Warneke, E. J. Williams, F. C. Fehsenfeld, A. R. Ravishankara, and M. Trainer
Atmos. Chem. Phys., 9, 3075–3093, https://doi.org/10.5194/acp-9-3075-2009,https://doi.org/10.5194/acp-9-3075-2009, 2009
13 May 2009
Size-resolved aerosol chemistry on Whistler Mountain, Canada with a high-resolution aerosol mass spectrometer during INTEX-B
Y. Sun, Q. Zhang, A. M. Macdonald, K. Hayden, S. M. Li, J. Liggio, P. S. K. Liu, K. G. Anlauf, W. R. Leaitch, A. Steffen, M. Cubison, D. R. Worsnop, A. van Donkelaar, and R. V. Martin
Atmos. Chem. Phys., 9, 3095–3111, https://doi.org/10.5194/acp-9-3095-2009,https://doi.org/10.5194/acp-9-3095-2009, 2009
14 May 2009
The impact of traffic emissions on atmospheric ozone and OH: results from QUANTIFY
P. Hoor, J. Borken-Kleefeld, D. Caro, O. Dessens, O. Endresen, M. Gauss, V. Grewe, D. Hauglustaine, I. S. A. Isaksen, P. Jöckel, J. Lelieveld, G. Myhre, E. Meijer, D. Olivie, M. Prather, C. Schnadt Poberaj, K. P. Shine, J. Staehelin, Q. Tang, J. van Aardenne, P. van Velthoven, and R. Sausen
Atmos. Chem. Phys., 9, 3113–3136, https://doi.org/10.5194/acp-9-3113-2009,https://doi.org/10.5194/acp-9-3113-2009, 2009
14 May 2009
Trans-pacific dust transport: integrated analysis of NASA/CALIPSO and a global aerosol transport model
K. Eguchi, I. Uno, K. Yumimoto, T. Takemura, A. Shimizu, N. Sugimoto, and Z. Liu
Atmos. Chem. Phys., 9, 3137–3145, https://doi.org/10.5194/acp-9-3137-2009,https://doi.org/10.5194/acp-9-3137-2009, 2009
15 May 2009
The influence of traffic and wood combustion on the stable isotopic composition of carbon monoxide
M. Saurer, A. S. H. Prévôt, J. Dommen, J. Sandradewi, U. Baltensperger, and R. T. W. Siegwolf
Atmos. Chem. Phys., 9, 3147–3161, https://doi.org/10.5194/acp-9-3147-2009,https://doi.org/10.5194/acp-9-3147-2009, 2009
15 May 2009
Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere
F. Costabile, W. Birmili, S. Klose, T. Tuch, B. Wehner, A. Wiedensohler, U. Franck, K. König, and A. Sonntag
Atmos. Chem. Phys., 9, 3163–3195, https://doi.org/10.5194/acp-9-3163-2009,https://doi.org/10.5194/acp-9-3163-2009, 2009
15 May 2009
Distribution of VOCs between air and snow at the Jungfraujoch high alpine research station, Switzerland, during CLACE 5 (winter 2006)
E. Starokozhev, E. Fries, A. Cycura, and W. Püttmann
Atmos. Chem. Phys., 9, 3197–3207, https://doi.org/10.5194/acp-9-3197-2009,https://doi.org/10.5194/acp-9-3197-2009, 2009
18 May 2009
The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols
J. D. Smith, J. H. Kroll, C. D. Cappa, D. L. Che, C. L. Liu, M. Ahmed, S. R. Leone, D. R. Worsnop, and K. R. Wilson
Atmos. Chem. Phys., 9, 3209–3222, https://doi.org/10.5194/acp-9-3209-2009,https://doi.org/10.5194/acp-9-3209-2009, 2009
18 May 2009
Evidence of mineral dust altering cloud microphysics and precipitation
Q.-L. Min, R. Li, B. Lin, E. Joseph, S. Wang, Y. Hu, V. Morris, and F. Chang
Atmos. Chem. Phys., 9, 3223–3231, https://doi.org/10.5194/acp-9-3223-2009,https://doi.org/10.5194/acp-9-3223-2009, 2009
CC BY 4.0