Volume 9, issue 8

Volume 9, issue 8

15 Apr 2009
Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter
L. Feng, P. I. Palmer, H. Bösch, and S. Dance
Atmos. Chem. Phys., 9, 2619–2633, https://doi.org/10.5194/acp-9-2619-2009,https://doi.org/10.5194/acp-9-2619-2009, 2009
16 Apr 2009
Intercomparison of ammonia measurement techniques at an intensively managed grassland site (Oensingen, Switzerland)
M. Norman, C. Spirig, V. Wolff, I. Trebs, C. Flechard, A. Wisthaler, R. Schnitzhofer, A. Hansel, and A. Neftel
Atmos. Chem. Phys., 9, 2635–2645, https://doi.org/10.5194/acp-9-2635-2009,https://doi.org/10.5194/acp-9-2635-2009, 2009
16 Apr 2009
Microphysical and radiative characterization of a subvisible midlevel Arctic ice cloud by airborne observations – a case study
A. Lampert, A. Ehrlich, A. Dörnbrack, O. Jourdan, J.-F. Gayet, G. Mioche, V. Shcherbakov, C. Ritter, and M. Wendisch
Atmos. Chem. Phys., 9, 2647–2661, https://doi.org/10.5194/acp-9-2647-2009,https://doi.org/10.5194/acp-9-2647-2009, 2009
23 Apr 2009
Influence of modelled soil biogenic NO emissions on related trace gases and the atmospheric oxidizing efficiency
J. Steinkamp, L. N. Ganzeveld, W. Wilcke, and M. G. Lawrence
Atmos. Chem. Phys., 9, 2663–2677, https://doi.org/10.5194/acp-9-2663-2009,https://doi.org/10.5194/acp-9-2663-2009, 2009
23 Apr 2009
Water vapour transport in the tropical tropopause region in coupled Chemistry-Climate Models and ERA-40 reanalysis data
Stefanie Kremser, Ingo Wohltmann, Markus Rex, Ulrike Langematz, Martin Dameris, and Markus Kunze
Atmos. Chem. Phys., 9, 2679–2694, https://doi.org/10.5194/acp-9-2679-2009,https://doi.org/10.5194/acp-9-2679-2009, 2009
23 Apr 2009
The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site
M. Demuzere, R. M. Trigo, J. Vila-Guerau de Arellano, and N. P. M. van Lipzig
Atmos. Chem. Phys., 9, 2695–2714, https://doi.org/10.5194/acp-9-2695-2009,https://doi.org/10.5194/acp-9-2695-2009, 2009
23 Apr 2009
Anthropogenic influence on SOA and the resulting radiative forcing
C. R. Hoyle, G. Myhre, T. K. Berntsen, and I. S. A. Isaksen
Atmos. Chem. Phys., 9, 2715–2728, https://doi.org/10.5194/acp-9-2715-2009,https://doi.org/10.5194/acp-9-2715-2009, 2009
24 Apr 2009
Energetic particle precipitation in ECHAM5/MESSy1 – Part 1: Downward transport of upper atmospheric NOx produced by low energy electrons
A. J. G. Baumgaertner, P. Jöckel, and C. Brühl
Atmos. Chem. Phys., 9, 2729–2740, https://doi.org/10.5194/acp-9-2729-2009,https://doi.org/10.5194/acp-9-2729-2009, 2009
24 Apr 2009
Dual-wavelength aerosol vertical profile measurements by MAX-DOAS at Tsukuba, Japan
H. Irie, Y. Kanaya, H. Akimoto, H. Iwabuchi, A. Shimizu, and K. Aoki
Atmos. Chem. Phys., 9, 2741–2749, https://doi.org/10.5194/acp-9-2741-2009,https://doi.org/10.5194/acp-9-2741-2009, 2009
27 Apr 2009
Mainz Isoprene Mechanism 2 (MIM2): an isoprene oxidation mechanism for regional and global atmospheric modelling
D. Taraborrelli, M. G. Lawrence, T. M. Butler, R. Sander, and J. Lelieveld
Atmos. Chem. Phys., 9, 2751–2777, https://doi.org/10.5194/acp-9-2751-2009,https://doi.org/10.5194/acp-9-2751-2009, 2009
27 Apr 2009
Long-term behavior of the concentration of the minor constituents in the mesosphere – a model study
M. Grygalashvyly, G. R. Sonnemann, and P. Hartogh
Atmos. Chem. Phys., 9, 2779–2792, https://doi.org/10.5194/acp-9-2779-2009,https://doi.org/10.5194/acp-9-2779-2009, 2009
27 Apr 2009
The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections
P. J. Young, A. Arneth, G. Schurgers, G. Zeng, and J. A. Pyle
Atmos. Chem. Phys., 9, 2793–2803, https://doi.org/10.5194/acp-9-2793-2009,https://doi.org/10.5194/acp-9-2793-2009, 2009
27 Apr 2009
Studies of heterogeneous freezing by three different desert dust samples
P. J. Connolly, O. Möhler, P. R. Field, H. Saathoff, R. Burgess, T. Choularton, and M. Gallagher
Atmos. Chem. Phys., 9, 2805–2824, https://doi.org/10.5194/acp-9-2805-2009,https://doi.org/10.5194/acp-9-2805-2009, 2009
27 Apr 2009
Introduction: European Integrated Project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales
M. Kulmala, A. Asmi, H. K. Lappalainen, K. S. Carslaw, U. Pöschl, U. Baltensperger, Ø. Hov, J.-L. Brenquier, S. N. Pandis, M. C. Facchini, H.-C. Hansson, A. Wiedensohler, and C. D. O'Dowd
Atmos. Chem. Phys., 9, 2825–2841, https://doi.org/10.5194/acp-9-2825-2009,https://doi.org/10.5194/acp-9-2825-2009, 2009
28 Apr 2009
The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) – Part 1: Model description and evaluation
S. R. Freitas, K. M. Longo, M. A. F. Silva Dias, R. Chatfield, P. Silva Dias, P. Artaxo, M. O. Andreae, G. Grell, L. F. Rodrigues, A. Fazenda, and J. Panetta
Atmos. Chem. Phys., 9, 2843–2861, https://doi.org/10.5194/acp-9-2843-2009,https://doi.org/10.5194/acp-9-2843-2009, 2009
30 Apr 2009
The contribution of anthropogenic bromine emissions to past stratospheric ozone trends: a modelling study
B.-M. Sinnhuber, N. Sheode, M. Sinnhuber, M. P. Chipperfield, and W. Feng
Atmos. Chem. Phys., 9, 2863–2871, https://doi.org/10.5194/acp-9-2863-2009,https://doi.org/10.5194/acp-9-2863-2009, 2009
30 Apr 2009
Technical Note: Feasibility of CO2 profile retrieval from limb viewing solar occultation made by the ACE-FTS instrument
P. Y. Foucher, A. Chédin, G. Dufour, V. Capelle, C. D. Boone, and P. Bernath
Atmos. Chem. Phys., 9, 2873–2890, https://doi.org/10.5194/acp-9-2873-2009,https://doi.org/10.5194/acp-9-2873-2009, 2009
CC BY 4.0