Atmos. Chem. Phys., 9, 9417-9432, 2009
www.atmos-chem-phys.net/9/9417/2009/
doi:10.5194/acp-9-9417-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
The influence of the vertical distribution of emissions on tropospheric chemistry
A. Pozzer1,2, P. Jöckel2,*, and J. Van Aardenne3
1The Cyprus Institute, Energy, Environment and Water Research Centre, Nicosia, Cyprus
2Max-Planck Institute of Chemistry, Air Chemistry Department, Mainz, Germany
3European Commission, DG Joint Research Centre, Ispra, Italy
*now at: Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen, Wessling, Germany

Abstract. The atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy atmospheric chemistry) is used to investigate the effect of height dependent emissions on tropospheric chemistry. In a sensitivity simulation, anthropogenic and biomass burning emissions are released in the lowest model layer. The resulting tracer distributions are compared to those of a former simulation applying height dependent emissions. Although the differences between the two simulations in the free troposphere are small (less than 5%), large differences are present in polluted regions at the surface, in particular for NOx (more than 100%), CO (up to 30%) and non-methane hydrocarbons (up to 30%), whereas for OH the differences at the same locations are somewhat lower (15%). Global ozone formation is virtually unaffected by the choice of the vertical distribution of emissions. Nevertheless, local ozone changes can be up to 30%. Model results of both simulations are further compared to observations from field campaigns and to data from measurement stations.

Citation: Pozzer, A., Jöckel, P., and Van Aardenne, J.: The influence of the vertical distribution of emissions on tropospheric chemistry, Atmos. Chem. Phys., 9, 9417-9432, doi:10.5194/acp-9-9417-2009, 2009.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share