Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 9, 9281-9297, 2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
10 Dec 2009
Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems
S. M. Burrows, T. Butler, P. Jöckel, H. Tost, A. Kerkweg, U. Pöschl, and M. G. Lawrence Max Planck Institute for Chemistry, Mainz, Germany
Abstract. Bacteria are constantly being transported through the atmosphere, which may have implications for human health, agriculture, cloud formation, and the dispersal of bacterial species. We simulate the global transport of bacteria, represented as 1 μm and 3 μm diameter spherical solid particle tracers in a general circulation model. We investigate factors influencing residence time and distribution of the particles, including emission region, cloud condensation nucleus activity and removal by ice-phase precipitation. The global distribution depends strongly on the assumptions made about uptake into cloud droplets and ice. The transport is also affected, to a lesser extent, by the emission region, particulate diameter, and season. We find that the seasonal variation in atmospheric residence time is insufficient to explain by itself the observed seasonal variation in concentrations of particulate airborne culturable bacteria, indicating that this variability is mainly driven by seasonal variations in culturability and/or emission strength. We examine the potential for exchange of bacteria between ecosystems and obtain rough estimates of the flux from each ecosystem by using a maximum likelihood estimation technique, together with a new compilation of available observations described in a companion paper. Globally, we estimate the total emissions of bacteria-containing particles to the atmosphere to be 7.6×1023–3.5×1024 a−1, originating mainly from grasslands, shrubs and crops. We estimate the mass of emitted bacteria- to be 40–1800 Gg a−1, depending on the mass fraction of bacterial cells in the particles. In order to improve understanding of this topic, more measurements of the bacterial content of the air and of the rate of surface-atmosphere exchange of bacteria will be necessary. Future observations in wetlands, hot deserts, tundra, remote glacial and coastal regions and over oceans will be of particular interest.

Citation: Burrows, S. M., Butler, T., Jöckel, P., Tost, H., Kerkweg, A., Pöschl, U., and Lawrence, M. G.: Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems, Atmos. Chem. Phys., 9, 9281-9297, doi:10.5194/acp-9-9281-2009, 2009.
Publications Copernicus