Atmos. Chem. Phys., 9, 4387-4406, 2009
www.atmos-chem-phys.net/9/4387/2009/
doi:10.5194/acp-9-4387-2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
Photochemical production of aerosols from real plant emissions
Th. F. Mentel1, J. Wildt2, A. Kiendler-Scharr1, E. Kleist2, R. Tillmann1, M. Dal Maso1, R. Fisseha1, Th. Hohaus1, H. Spahn1, R. Uerlings2, R. Wegener1, P. T. Griffiths3, E. Dinar4, Y. Rudich4, and A. Wahner1
1Inst. for Chemistry and Dynamics of the Geosphere, Inst. 2: Troposphere, Research Centre Jülich, 52425 Jülich, Germany
2Inst. for Chemistry and Dynamics of the Geosphere, Inst. 3: Phytosphere, Research Centre Jülich, 52425 Jülich, Germany
3Centre for Atmospheric Science, Dept. of Chemistry, Lensfield Road, Univ. of Cambridge, Cambridge, CB2 1EW, UK
4Dept. of Environmental Sciences, Weizmann Institute, Rehovot 76100, Israel

Abstract. Emission of biogenic volatile organic compounds (VOC) which on oxidation form secondary organic aerosols (SOA) can couple the vegetation with the atmosphere and climate. Particle formation from tree emissions was investigated in a new setup: a plant chamber coupled to a reaction chamber for oxidizing the plant emissions and for forming SOA. Emissions from the boreal tree species birch, pine, and spruce were studied. In addition, α-pinene was used as reference compound. Under the employed experimental conditions, OH radicals were essential for inducing new particle formation, although O3 (≤80 ppb) was always present and a fraction of the monoterpenes and the sesquiterpenes reacted with ozone before OH was generated. Formation rates of 3 nm particles were linearly related to the VOC carbon mixing ratios, as were the maximum observed volume and the condensational growth rates. For all trees, the threshold of new particle formation was lower than for α-pinene. It was lowest for birch which emitted the largest fraction of oxygenated VOC (OVOC), suggesting that OVOC may play a role in the nucleation process. Incremental mass yields were ≈5% for pine, spruce and α-pinene, and ≈10% for birch. α-Pinene was a good model compound to describe the yield and the growth of SOA particles from coniferous emissions. The mass fractional yields agreed well with observations for boreal forests. Despite the somewhat enhanced VOC and OH concentrations our results may be up-scaled to eco-system level. Using the mass fractional yields observed for the tree emissions and weighting them with the abundance of the respective trees in boreal forests SOA mass concentration calculations agree within 6% with field observations. For a future VOC increase of 50% we predict a particle mass increase due to SOA of 19% assuming today's mass contribution of pre-existing aerosol and oxidant levels.

Citation: Mentel, Th. F., Wildt, J., Kiendler-Scharr, A., Kleist, E., Tillmann, R., Dal Maso, M., Fisseha, R., Hohaus, Th., Spahn, H., Uerlings, R., Wegener, R., Griffiths, P. T., Dinar, E., Rudich, Y., and Wahner, A.: Photochemical production of aerosols from real plant emissions, Atmos. Chem. Phys., 9, 4387-4406, doi:10.5194/acp-9-4387-2009, 2009.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share