Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 9, 4279-4294, 2009
© Author(s) 2009. This work is distributed
under the Creative Commons Attribution 3.0 License.
03 Jul 2009
Identifying convective transport of carbon monoxide by comparing remotely sensed observations from TES with cloud modeling simulations
J. J. Halland1, H. E. Fuelberg1, K. E. Pickering2, and M. Luo3 1Department of Meteorology, Florida State University, Tallahassee, Florida, USA
2NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
3Jet Propulsion Laboratory, Pasadena, California, USA
Abstract. Understanding the mechanisms that transport pollutants from the surface to the free atmosphere is important for determining the atmosphere's chemical composition. This study quantifies the vertical transport of tropospheric carbon monoxide (CO) by deep mesoscale convective systems and assesses the ability of the satellite-borne Tropospheric Emission Spectrometer (TES) to detect the resulting enhanced CO in the upper atmosphere. A squall line that is similar to one occurring during NASA's INTEX-B mission is simulated using a typical environmental wind shear profile and the 2-D Goddard Cumulus Ensemble model. The simulation provides post-convection CO profiles. The structure of the simulated squall line is examined, and its vertical transport of CO is quantified. Then, TES' ability to resolve the convectively modified CO distribution is documented using a "clear-sky" retrieval scheme. Results show that the simulated squall line transports the greatest mass of CO in the upper levels, with a value of 96 t upward and 67 t downward at 300 hPa. Results indicate that TES has sufficient sensitivity to resolve convectively lofted CO, as long as the retrieval scene is cloud-free. TES swaths located immediately downwind of squall lines have the greatest chance of sensing convective transport because the impact of clouds on retrieval quality becomes less. A note of caution is to always analyze TES-derived CO data (or data from any satellite sensor) together with the retrieval averaging kernels that describe the information content of the retrieval.

Citation: Halland, J. J., Fuelberg, H. E., Pickering, K. E., and Luo, M.: Identifying convective transport of carbon monoxide by comparing remotely sensed observations from TES with cloud modeling simulations, Atmos. Chem. Phys., 9, 4279-4294, doi:10.5194/acp-9-4279-2009, 2009.
Publications Copernicus
Special issue