Volume 8, issue 4

Volume 8, issue 4

18 Feb 2008
Development and evaluation of an operational SDS forecasting system for East Asia: CUACE/Dust
C. H. Zhou, S. L. Gong, X. Y. Zhang, Y. Q. Wang, T. Niu, H. L. Liu, T. L. Zhao, Y. Q. Yang, and Q. Hou
Atmos. Chem. Phys., 8, 787–798, https://doi.org/10.5194/acp-8-787-2008,https://doi.org/10.5194/acp-8-787-2008, 2008
18 Feb 2008
Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol
A. Asa-Awuku, A. P. Sullivan, C. J. Hennigan, R. J. Weber, and A. Nenes
Atmos. Chem. Phys., 8, 799–812, https://doi.org/10.5194/acp-8-799-2008,https://doi.org/10.5194/acp-8-799-2008, 2008
19 Feb 2008
Long-term climatology of air mass transport through the Tropical Tropopause Layer (TTL) during NH winter
K. Krüger, S. Tegtmeier, and M. Rex
Atmos. Chem. Phys., 8, 813–823, https://doi.org/10.5194/acp-8-813-2008,https://doi.org/10.5194/acp-8-813-2008, 2008
20 Feb 2008
Intercomparison of ILAS-II version 1.4 and version 2 target parameters with MIPAS-Envisat measurements
A. Griesfeller, T. von Clarmann, J. Griesfeller, M. Höpfner, M. Milz, H. Nakajima, T. Steck, T. Sugita, T. Tanaka, and T. Yokota
Atmos. Chem. Phys., 8, 825–843, https://doi.org/10.5194/acp-8-825-2008,https://doi.org/10.5194/acp-8-825-2008, 2008
21 Feb 2008
Equatorial wave analysis from SABER and ECMWF temperatures
M. Ern, P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III
Atmos. Chem. Phys., 8, 845–869, https://doi.org/10.5194/acp-8-845-2008,https://doi.org/10.5194/acp-8-845-2008, 2008
22 Feb 2008
The response of surface ozone to climate change over the Eastern United States
P. N. Racherla and P. J. Adams
Atmos. Chem. Phys., 8, 871–885, https://doi.org/10.5194/acp-8-871-2008,https://doi.org/10.5194/acp-8-871-2008, 2008
22 Feb 2008
On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime
A. Saiz-Lopez, J. M. C. Plane, A. S. Mahajan, P. S. Anderson, S. J.-B. Bauguitte, A. E. Jones, H. K. Roscoe, R. A. Salmon, W. J. Bloss, J. D. Lee, and D. E. Heard
Atmos. Chem. Phys., 8, 887–900, https://doi.org/10.5194/acp-8-887-2008,https://doi.org/10.5194/acp-8-887-2008, 2008
22 Feb 2008
Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements
J.-C. Raut and P. Chazette
Atmos. Chem. Phys., 8, 901–919, https://doi.org/10.5194/acp-8-901-2008,https://doi.org/10.5194/acp-8-901-2008, 2008
25 Feb 2008
Lightning activity in Brazilian thunderstorms during TROCCINOX: implications for NOx production
H. Huntrieser, U. Schumann, H. Schlager, H. Höller, A. Giez, H.-D. Betz, D. Brunner, C. Forster, O. Pinto Jr., and R. Calheiros
Atmos. Chem. Phys., 8, 921–953, https://doi.org/10.5194/acp-8-921-2008,https://doi.org/10.5194/acp-8-921-2008, 2008
25 Feb 2008
Do supersonic aircraft avoid contrails?
A. Stenke, V. Grewe, and S. Pechtl
Atmos. Chem. Phys., 8, 955–967, https://doi.org/10.5194/acp-8-955-2008,https://doi.org/10.5194/acp-8-955-2008, 2008
25 Feb 2008
The validity of the kinetic collection equation revisited
L. Alfonso, G. B. Raga, and D. Baumgardner
Atmos. Chem. Phys., 8, 969–982, https://doi.org/10.5194/acp-8-969-2008,https://doi.org/10.5194/acp-8-969-2008, 2008
26 Feb 2008
SAGE II measurements of stratospheric aerosol properties at non-volcanic levels
L. W. Thomason, S. P. Burton, B.-P. Luo, and T. Peter
Atmos. Chem. Phys., 8, 983–995, https://doi.org/10.5194/acp-8-983-2008,https://doi.org/10.5194/acp-8-983-2008, 2008
26 Feb 2008
A case of extreme particulate matter concentrations over Central Europe caused by dust emitted over the southern Ukraine
W. Birmili, K. Schepanski, A. Ansmann, G. Spindler, I. Tegen, B. Wehner, A. Nowak, E. Reimer, I. Mattis, K. Müller, E. Brüggemann, T. Gnauk, H. Herrmann, A. Wiedensohler, D. Althausen, A. Schladitz, T. Tuch, and G. Löschau
Atmos. Chem. Phys., 8, 997–1016, https://doi.org/10.5194/acp-8-997-2008,https://doi.org/10.5194/acp-8-997-2008, 2008
26 Feb 2008
Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005
L. Järvi, H. Junninen, A. Karppinen, R. Hillamo, A. Virkkula, T. Mäkelä, T. Pakkanen, and M. Kulmala
Atmos. Chem. Phys., 8, 1017–1027, https://doi.org/10.5194/acp-8-1017-2008,https://doi.org/10.5194/acp-8-1017-2008, 2008
26 Feb 2008
Influence of particle size and chemistry on the cloud nucleating properties of aerosols
P. K. Quinn, T. S. Bates, D. J. Coffman, and D. S. Covert
Atmos. Chem. Phys., 8, 1029–1042, https://doi.org/10.5194/acp-8-1029-2008,https://doi.org/10.5194/acp-8-1029-2008, 2008
27 Feb 2008
How quickly do cloud droplets form on atmospheric particles?
C. R. Ruehl, P. Y. Chuang, and A. Nenes
Atmos. Chem. Phys., 8, 1043–1055, https://doi.org/10.5194/acp-8-1043-2008,https://doi.org/10.5194/acp-8-1043-2008, 2008
27 Feb 2008
Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality model – Part 1: Treatment of inorganic electrolytes and organic compounds in the condensed phase
S. L. Clegg, M. J. Kleeman, R. J. Griffin, and J. H. Seinfeld
Atmos. Chem. Phys., 8, 1057–1085, https://doi.org/10.5194/acp-8-1057-2008,https://doi.org/10.5194/acp-8-1057-2008, 2008
27 Feb 2008
Effects of uncertainties in the thermodynamic properties of aerosol components in an air quality model – Part 2: Predictions of the vapour pressures of organic compounds
S. L. Clegg, M. J. Kleeman, R. J. Griffin, and J. H. Seinfeld
Atmos. Chem. Phys., 8, 1087–1103, https://doi.org/10.5194/acp-8-1087-2008,https://doi.org/10.5194/acp-8-1087-2008, 2008
28 Feb 2008
An improvement on the dust emission scheme in the global aerosol-climate model ECHAM5-HAM
T. Cheng, Y. Peng, J. Feichter, and I. Tegen
Atmos. Chem. Phys., 8, 1105–1117, https://doi.org/10.5194/acp-8-1105-2008,https://doi.org/10.5194/acp-8-1105-2008, 2008
CC BY 4.0