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Abstract. We interpret a suite of satellite, aircraft, and
ground-based measurements over the North Pacific Ocean
and western North America during April–May 2006 as
part of the Intercontinental Chemical Transport Experiment
Phase B (INTEX-B) campaign to understand the implica-
tions of long-range transport of East Asian emissions to
North America. The Canadian component of INTEX-B
included 33 vertical profiles from a Cessna 207 aircraft
equipped with an aerosol mass spectrometer. Long-range
transport of organic aerosols was insignificant, contrary to
expectations. Measured sulfate plumes in the free tropo-
sphere over British Columbia exceeded 2µg/m3. We up-
date the global anthropogenic emission inventory in a chem-
ical transport model (GEOS-Chem) and use it to interpret the
observations. Aerosol Optical Depth (AOD) retrieved from
two satellite instruments (MISR and MODIS) for 2000–2006
are analyzed with GEOS-Chem to estimate an annual growth
in Chinese sulfur emissions of 6.2% and 9.6%, respectively.
Analysis of aircraft sulfate measurements from the NASA
DC-8 over the central Pacific, the NSF C-130 over the east
Pacific and the Cessna over British Columbia indicates most
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Asian sulfate over the ocean is in the lower free troposphere
(800–600 hPa), with a decrease in pressure toward land due
to orographic effects. We calculate that 56% of the mea-
sured sulfate between 500–900 hPa over British Columbia
is due to East Asian sources. We find evidence of a 72–
85% increase in the relative contribution of East Asian sul-
fate to the total burden in spring off the northwest coast of
the United States since 1985. Campaign-average simulations
indicate anthropogenic East Asian sulfur emissions increase
mean springtime sulfate in Western Canada at the surface by
0.31µg/m3(∼30%) and account for 50% of the overall re-
gional sulfate burden between 1 and 5 km. Mean measured
daily surface sulfate concentrations taken in the Vancouver
area increase by 0.32µg/m3 per 10% increase in the simu-
lated fraction of Asian sulfate, and suggest current East Asian
emissions episodically degrade local air quality by more than
1.5µg/m3.

1 Introduction

The transport of Asian emissions to North America has been
well documented (e.g. Parrish et al., 1992; Jaffe et al., 1999;
Bertschi et al., 2004; Liang et al., 2004; Park et al., 2004).
Andreae et al. (1988) measured sulfate (SO=

4 ) concentrations
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Fig. 1. Spatial domain of observations used to characterize Asian
SO2 emissions and their impact. The domains and flightpaths of the
DC-8, C-130 and Cessna aircraft are shown in blue, red and green,
respectively. The domain of the MODIS and MISR satellite obser-
vations used to estimate emissions is shown in yellow. Figure 2
shows a detailed plot of the Cessna flight tracks.

off the northwest coast of the United States in May 1985,
and attributed enhancements in the free troposphere to Asian
sources. Asian emissions of sulfur oxides (SOx=SO2+SO=

4 )

are dominated by SO2 and have grown substantially over the
last two decades (Streets and Waldhoff, 2000). They increas-
ingly impact North America, affecting both regional air qual-
ity (Park et al., 2004; Heald et al., 2006) and climate (Liu et
al., 2008). Additional analysis of in-situ and remote-sensed
observations are needed to quantify this long-range transport
and its implications.

A growing body of evidence exists for long-range trans-
port to Canada. During the Polar Sunrise Experiment in 1992
at Alert concentrations of SOx were well correlated with
long-range transport of fine anthropogenic aerosol (Barrie et
al., 1994; Sirois and Barrie, 1999) analyzed aerosol composi-
tion between 1980 and 1995 to infer the presence of Eurasian
SO=

4 in the Canadian Arctic. Asian pesticides have been ob-
served in the Yukon Territory as a result of transpacific flow
(Bailey et al., 2000). The influence of long-range transport
to Canada is not limited to remote regions, and is especially
relevant in populated areas. Asian pesticides have been trans-
ported to the Fraser Valley, British Columbia (Harner et al.,
2005). Chinese dust has been observed in British Columbia’s
Lower Fraser Valley (McKendry et al., 2001) and can be
linked to SO=

4 transport through the uptake of sulfur dioxide
(SO2) on dust (Jordan et al., 2003; Song et al., 2007). Dust
transport to western Canada has also been observed from as
far as the Sahara Desert (McKendry et al., 2007). Although
aerosol in the Asian boundary layer may be readily scav-
enged near its source by wet deposition, SO2 emissions can
escape to the free troposphere prior to SO=

4 conversion and
be subsequently transported across the Pacific Ocean (Brock
et al., 2004; Dunlea et al., 20081). Elevated aerosol concen-
trations, attributed to East Asian combustion sources, have

1Dunlea, E., DeCarlo, P. F., Kimmel, J. R., Aiken, A. C., Peltier,
R., Weber, R., Tomlison, J., Collins, D., Shinozuka, Y., Howell,
S., Clarke, A., Emmons, L., Apel, E., Pfister, G., van Donkelaar,

been observed reaching North America near the Canadian
border at Cheeka Peak (Jaffe et al., 1999).

Satellite observations offer a top-down constraint on emis-
sions. Previous work includes absolute emissions of nitro-
gen oxides (Leue et al., 2001; Martin et al., 2003a; Jaeglé
et al., 2005; M̈uller and Stavrakou, 2005), volatile organic
compounds (Palmer et al., 2003; Fu et al., 2007), and carbon
monoxide (Arellano et al., 2004; Heald et al., 2004; Pétron et
al., 2004), as well as trends in nitrogen oxide (Richter et al.,
2005; van der A et al., 2006; Zhang et al., 2007) emissions.
The clearest signals in current SO2 retrievals are of volcanic
activity (Khokar et al., 2005), although anthropogenic ac-
tivity has also been detected (Eisinger and Burrows, 1998;
Krotkov et al., 2006; Carn et al., 2007). In some regions
satellite-retrieved Aerosol Optical Depth (AOD) is closely
related to SO2 emissions through production of SO=

4 (Massie
et al., 2004; Dubovik et al., 2008).

Springtime weather patterns generally produce the
strongest seasonal outflow from Asia (Jacob et al., 2003; Liu
et al., 2005), and can result in a pronounced influence of
Asian emissions upon the North American continent. During
April and May 2006, the Intercontinental Chemical Trans-
port Experiment, Phase B (INTEX-B) set out to assess this
influence using a combination of aircraft and satellite mea-
surements throughout the northeastern Pacific (Singh et al.,
20082). This NASA-driven initiative constituted the second
half of the INTEX project, and was designed to improve the
understanding of gas and aerosol transformation and trans-
port on transcontinental and intercontinental scales.

In this paper we investigate the long-range transport of
East Asian SO=4 to Canada. Section 2 presents the aircraft
component of the Canadian contribution to INTEX-B and
outlines the other instruments, platforms and the model used
in this study. In Sect. 3, we estimate the recent growth in East
Asian SOx emissions based upon remote sensing measure-
ments. Section 4 combines data from a chemical transport
model with in-situ measurements to characterize the Asian
sulfur transport to Canada during INTEX-B. This section
goes on to assess the development of East Asian SO=

4 influx
to North America between 1985 and INTEX-B using aircraft
data from both periods. A case study of an Asian plume is
presented in Sect. 5, along with the implications for Cana-
dian air quality. Conclusions are in Sect. 6.

A., Millet, D., Heald, C., and Jimenez, J.-L.: Evolution of Asian
aerosols during transpacific transport in INTEX-B, Atmos. Chem.
Phys. Discuss., in preparation, 2008.

2Singh, H. B., Brune, W. H., Crawford, J. H., Jacob, D. J., Rus-
sel, P. B., et al.: An overview of the INTEX-B campaign: Transport
and transformation of pollutants over the Pacific and the Gulf of
Mexico, Atmos. Chem. Phys. Discuss., in preparation, 2008.
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2 INTEX-B platforms

Here we introduce the aircraft, surface and satellite measure-
ments, and the model used for interpretation.

2.1 In-situ measurements

Figure 1 provides an overview of the measurement platforms
and regions examined throughout this manuscript. Several
aircraft participated in INTEX-B, including the NASA DC-
8, the NSF C-130 and a Canadian Cessna 207 described be-
low. Throughout this manuscript, we limit the DC-8 and C-
130 measurements to within the boxed regions of Fig. 1 to
focus on long-range transport of Asian aerosol to Canada.
The DC-8 aircraft utilized both a mist chamber (Cofer et
al., 1985) and bulk aerosol filters to characterize the SO=

4
aerosol load, during 10 flights between 17 April 2006 and
15 May 2006. The size cutoff of the onboard mist cham-
ber system is∼1µm (based on estimated particle transmis-
sion efficiency through the inlet and sampler) while that of
the bulk aerosol filters has been empirically determined to
be∼4.5µm (McNaughton et al., 2007). Mist chamber sam-
pling periods are less than two minutes and aerosol filters are
not exposed longer than 10 to 20 min, depending upon al-
titude. Uncertainties in the reported SO=

4 mixing ratios are
∼20% from the mist chamber and∼25 pptv (∼110 ng/m3)

from the filters. A chemical ionization mass spectrometer
(CIMS) instrument (Huey et al., 2004; Kim et al., 2007) was
also onboard the DC-8 and used for the measurement of SO2
with a sampling frequency of approximately 3 s.

The C-130 platform included a high-resolution time-of-
flight aerosol mass spectrometer (HR-ToF-AMS) (DeCarlo
et al., 2006; Canagaratna et al., 2007; Dunlea et al., 20081)
with ∼12 s sampling frequency and a particle-into-liquid
sampler (PILS) (Weber et al., 2001; Peltier et al., 2008) of
one minute sampling frequency during its 11 flights between
21 April 2006 and 15 May 2006. AMS particle transmis-
sion is approximately PM1 in vacuum aerodynamic diame-
ter (Jayne et al., 2000) with particle transmission efficiency
rapidly decreasing for aerosols larger than 0.7µm (e.g. Ru-
pakheti et al., 2005; Liu et al., 2007). A collection effi-
ciency (CE) of 0.5 is used for the AMS on the C-130 and
is based on many previous intercomparisons (Canagaratna et
al., 2007, and references therein), with a correction for in-
creased CE under high acidity conditions (Quinn et al., 2006)
as discussed by Dunlea et al. (2008)1. PILS measurements
were restricted to particles less than 1µm (at 1 atm. pres-
sure) aerodynamic diameter via a single-stage micro-orifice
impactor (Model 100, MSP Corp.). AMS and PILS sulfate
measurement uncertainties are estimated at 25% and 10%,
respectively.

Whistler Peak Station (50.1◦ N, 122.9◦ W, 2182 m) is op-
erated by Environment Canada and has provided continuous
measurements of meteorological data, CO and O3 since its
establishment in 2002 (Macdonald et al., 2006). Inorganic

filter packs of SO=4 , NO−

3 and Ca+ are also routinely col-
lected and analyzed. In addition to these regular measure-
ments, a HR-ToF-AMS (Zhang et al., 20083) and a Micro-
Orifice Uniform Deposit Impactor (MOUDI) were operated
at the site for the duration of INTEX-B. The MOUDI was op-
erated with three stages to isolate particles into three nominal
size bins of<1µm, 1–3µm and>3µm.

A Cessna 207 aircraft, supplied by Environment Canada
during INTEX-B, contained a suite of instruments designed
to capture both trace gases and aerosol pollutants (Leaitch et
al., 20084). Aerosol instrumentation included number con-
centrations of ultra-fine aerosol (PMS7610), aerosol size dis-
tribution (FSSP300:<18µm and PCASP:<2.5µm) and
aerosol composition by way of a quadrupole aerosol mass
spectrometer (Q-AMS) (Rupakheti et al., 2005; Jimenez et
al., 2003; Jayne et al., 2000). The Q-AMS detection lim-
its are 40 ng/m3 for SO=

4 and nitrate, and 600 ng/m3 for
organic aerosol for each one-minute average measurement.
The CE used with the Cessna AMS is discussed by Leaitch
et al. (2008)4. Walker et al. (2008)5 describe and interpret
O3 and CO measurements on the Cessna.

All Cessna 207 flights, shown in Fig. 2, originated outside
Pemberton, B.C., 35 km north of Whistler, with the exception
of one inter-comparison flight with the C-130, conducted on
9 May 2006 along the Canada-US border and related tran-
sit. Most Cessna flight tracks consisted of an ascent and de-
scent near Whistler Peak Station before returning to the take-
off site. Thirty-three flights occurred between 22 April 2006
and 17 May 2006, with most extending from the surface to
approximately 5 km (550 hPa) altitude and those with valid
Q-AMS data occurring mid-late morning to late afternoon.
Q-AMS data from the May 9 inter-comparison and several
other flights were lost due to radio frequency interference,
resulting in a total of 21 flights with successful Q-AMS mea-
surements.

The right panel of Fig. 2 shows the flight paths for the
3 May inter-comparison flight between the Cessna and the
C-130. The inter-comparison zone is outlined in grey. The
Cessna descent was not completed within the comparison re-
gion until approximately 50 min after the C-130 had left the
inter-comparison zone. To minimize the effect of sampling

3Zhang, Q., Sun, Y., Leaitch, R. W., Macdonald, A. M., Hay-
den, K., Li, S.-M., Liggio, J., van Donkelaar, A., Martin, R. V.,
Worsnop, D., Dunlea, E., Cubison, M.: Characterization of sub-
micron aerosols at the Whistler summit during INTEX-B using an
Aerodyne high-resolution time-of-flight aerosol mass spectrometer,
J. Geophys. Res., in preparation, 2008.

4Leaitch, W. R., Macdonald, A. M., Anlauf, K. G. et al.: Vertical
profiles of aerosols and ozone at Whistler, B.C. during INTEX-B,
in preparation, 2008.

5Walker, T. W., Martin, R. V., van Donkelaar, A., Leaitch, W. R.,
MacDonald, A. M., Anlauf, K., Cohen, C., Huey, G. Avery, M. A.,
Weinheimer, A., Flocke, F., Tarasick, D., Thompson, A., Streets,
D., Ziemke, J., and Buscela, E.: Trans-Pacific transport of ozone
and reactive nitrogen in spring, in preparation, 2008.
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Fig. 2. Flight paths of the Cessna 207 aircraft during the INTEX-
B campaign over 22 April 2006 to 17 May 2006. The left panel
shows all Cessna 207 flights, with colors representing individual
flights. The right panel highlights the 3 May 2006 inter-comparison
flight between the Cessna and C-130 aircraft. The flight track of
the Cessna is shown in red, and of the C-130 in blue. The grey box
defines the inter-comparison region.

time differences, we compare only measurements taken dur-
ing the Cessna upward spiral against those from the C-130.

Figure 3 shows the speciated aerosol profiles from both
aircraft during this intercomparison. All measurements are
converted to concentrations at standard temperature and pres-
sure of 1013 hPa and 0◦C. Significant agreement is found be-
tween the AMS measurements, with respective Root Mean
Square Differences (RMSD) and mean bias of, 0.9 and
0.3µg/m3 for SO=

4 , 0.3 and 0.2µg/m3 for organics, 0.03 and
0.003µg/m3 for nitrate, and 0.2 and−0.0007µg/m3 for am-
monium. The largest disagreement is found in SO=

4 at ap-
proximately 625 hPa, likely representative of a change in air
mass, as indicated by significant and abnormal disagreement
(∼30%) between the relative humidity measurements on the
two aircraft. Measurements at this particular pressure were
sampled∼35 minutes apart. Removal of points between 600
and 650 hPa, decreases the RMSD and bias in SO=

4 to 0.6 and
−0.01µg/m3 respectively, leaving other species largely un-
changed. This is considered good agreement for these sam-
pling conditions.

MOUDI measurements of the SO=

4 size distribution at
Whistler Peak during INTEX-B indicate a mean ratio of total
SO=

4 aerosol to SO=4 below 1µm in aerodynamic diameter
of 1.4. This value is likely more appropriate for lower tropo-
spheric SO=4 , which is the focus of this study, than for upper
tropospheric SO=4 . We scale the submicron SO=

4 measure-
ments by this correction factor, which is further justified in
Sect. 4, to better represent total SO=

4 mass. Airborne mea-
surements off the west coast of Washington State and Ore-
gon in May 1985 found that up to half of the non-seasalt
SO=

4 mass was above 1.5µm (Andreae et al., 1988) suggest-
ing either the use of a larger scale factor may be appropriate,

Fig. 3. Aerosol Mass Spectrometer (AMS) measurements from the
May 3, 2006 inter-comparison flight over Whistler Peak Station
(50.1◦ N, 122.9◦ W). Cessna data are shown in red. C-130 data are
shown in blue. All data at STP. No scaling for the upper size cut of
the AMS has been applied to these data.

or that a change in the SO=4 size distribution has occurred
between these flight periods. MOUDI measurements of the
NO−

3 size distribution indicate that total NO−3 aerosol is eight
times larger than submicron NO−3 . However, we do not apply
a correction factor to nitrate measurements due to concerns
about such a large scale factor.

Figure 4 shows average vertical profiles of Cessna Q-AMS
and water (H2O) concentration data obtained during four
separate enhancement periods. SO=

4 concentrations of 1–
3µg/m3 dominate in the free troposphere and tend to in-
crease with altitude, implying long-range transport. In con-
trast, organic concentrations typically decrease with altitude
and dominate at the surface, implying a local source. These
opposing trends suggest that the amount of organics trans-
ported with SO=4 is small and that long-range transport of or-
ganic aerosols is not a significant contributor to the organic
concentration in the region studied. Leaitch et al. (2008)4

find a high level of mass closure with Cessna Q-AMS mea-
surements, suggesting that the relatively high Q-AMS de-
tection limit for organics (0.4–0.6µg/m3) has not impacted
this conclusion. They also show that the occurrence of in-
creased sulfate usually accompanies an increase in the num-
ber and mass concentrations of coarse particles. Dunlea et
al. (2008)1 find that SO=

4 concentrations exceed those of or-
ganics for all Asian plume intercepts in the C-130, with older
air masses being characterized by a larger SO=

4 /organics ra-
tio than younger ones having undergone more rapid trans-
port, presumably due to additional production of SO=

4 dur-
ing their extended transport time. The organic enhancement
over 15 May–17 May is likely fuelled by an unusually high
mixed layer depth, as indicated by the water concentration
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profile, and can be attributed to local sources. This period
is further examined by Zhang et al. (2008)3 and McKendry
et al. (2008). The contribution of nitrate to particulate mass
is relatively insignificant, in part reflecting AMS size restric-
tions. We focus on long-range transport of SO=

4 for the re-
mainder of the manuscript.

2.2 Model Description

We use the GEOS-Chem chemical transport model v7-04-
09 (Bey et al., 2001) (http://www-as.harvard.edu/chemistry/
trop/geos/index.html) to interpret the aforementioned mea-
surements. GEOS-Chem is driven by assimilated meteo-
rological data from the Goddard Earth Observing System
(GEOS-4) at the NASA Global Modeling Assimilation Of-
fice (GMAO), with 30 vertical levels and degraded to the
model’s horizontal resolution of 2◦ latitude by 2.5◦ longi-
tude.

The aerosol simulation in GEOS-Chem includes the
sulfate-nitrate-ammonium system (Park et al., 2004; Park et
al., 2006), carbonaceous aerosols (Park et al., 2003; Liao
et al., 2007), mineral dust (Fairlie et al., 2007) and sea-salt
(Alexander et al., 2005). The aerosol and oxidant simula-
tions are coupled through formation of sulfate and nitrate
(Park et al., 2004), heterogeneous chemistry (Jacob, 2000)
and aerosol effects on photolysis rates (Martin et al., 2003b).
Wet and dry deposition are based upon Liu et al. (2001),
including both washout and rainout. GEOS-Chem captures
both the timing and distribution of Asian dust outbreaks dur-
ing TRACE-P and ACE-Asia (Fairlie et al., 2007). It exhibits
no significant bias in Asian SOx (SO2+SO=

4 ) outflow dur-
ing spring 2001 as part of the TRACE-P campaign (Park et
al., 2005), although modeled SO=

4 concentrations were 50%
high during ACE-Asia, which may suggest an error in SO2
oxidation rates (Heald et al., 2005).

The global emission inventory in the standard GEOS-
Chem model is based on GEIA (Benkovitz et al., 1996)
for the base year of 1985 with scale factors to 1998.
We implement here the EDGAR 3.2FT2000 emission in-
ventory based upon the year 2000 (Olivier et al., 2001)
to provide a more current estimate of global emissions
of NOx, SOx and CO. The global inventory is replaced
by regional inventories from NEI99 (http://www.epa.gov/
ttn/chief/net/1999inventory.html) over the United States for
1999, BRAVO (Kuhns et al., 2005) over Mexico for 1999 and
Streets et al. (2003, 2006) for 2000 (NOx and SOx) and 2001
(CO) for eastern Asia. EMEP emissions (http://www.emep.
int) of NOx and CO are used over Europe for up to 2000.
We update the eastern Asia emissions to 2006 from Streets
et al. (http://www.cgrer.uiowa.edu/EMISSIONDATA new/
index 16.html and implement CAC emissions (http://www.
ec.gc.ca/pdb/cac/) over Canada for 2005 and EMEP SOx
emissions (Vestreng et al., 2007) over Europe for the year
2004.

Fig. 4. Cessna Q-AMS vertical profiles of sulfate, organics and ni-
trate during four enhancement periods. Sulfate (SO=

4 ) data have
been scaled by multiplying with a factor of 1.4 to account for par-
ticle size restrictions as inferred from MOUDI measurements at
Whistler summit. Aerosol data are at STP. Water (H2O) concen-
tration profiles are in cyan. Date ranges are indicated in the bottom
right of each plot. Error bars represent one standard deviation of
the data. A small vertical offset is included between datasets for
visibility.

We scale all regional and global inventories from their re-
spective base year to 2003, the last year of available statis-
tics, unless its base year is after 2003. Our approach fol-
lows Bey et al. (2001) and Park et al. (2004). Emissions are
scaled according to estimates provided by individual coun-
tries, where available. These countries/regions include the
United States, Canada, Japan and Europe. NOx emissions
of remaining countries are scaled proportional to changes in
total CO2 emissions. SOx emissions are similarly scaled to
solid fuel CO2 emissions and CO emissions to liquid fuel
CO2 emissions. A scale factor of 4.1% per year is used for
ship emissions (Corbett et al., 2007). CO2 emission data
are obtained from the Carbon Dioxide Information Analysis
Center (CDIAC).

In addition to annual scale factors, diurnal scale factors are
also applied to NOx emissions. Here, the intra-day variation
of each grid cell is based upon the diurnal variation of each
source type, as provided with the EDGAR inventory, and its
relative contribution to total NOx emissions within that cell.

www.atmos-chem-phys.net/8/2999/2008/ Atmos. Chem. Phys., 8, 2999–3014, 2008
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Fig. 5. Aerosol Optical Depth (AOD) from the MODIS and MISR satellite instruments and a GEOS-Chem simulation. The top row shows
mean AOD over 2000–2006 and defines Region 1 as used in the lower panels. The middle panel shows monthly mean retrieved and simulated
AOD for Region 1 with simulated SOx emissions held at 2000 levels. Simulated contributions of dust and SO=

4 to total AOD are also shown.
Highlighted areas indicate time periods used in the lower panels. The bottom left panel shows the Region 1 difference between retrieved and
simulated AOD averaged between July and December of each year expressed as a percentage of mean retrieved AOD. Dashed line indicates
best linear fit, error bars represent the 20th and 80th percentile. The bottom right panel shows the simulated relationship in Region 1 between
total AOD and SOx emissions over July–December 2000–2006 as calculated with 5 simulations with SOx emissions increased by 0%, 5%,
10%, 15% and 20%. The red and blue stars respectively indicate the observed change in difference of simulated AOD between MISR and
MODIS. Error bars denote one standard deviation of the data.

2.3 Satellite instrumentation

Aerosol Optical Depth (AOD), a measure of light extinction,
has been retrieved since 2000 from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Multi-angle Imag-
ing Spectroradiometer (MISR), onboard the NASA satellite
Terra. The MODIS retrieval of AOD is based on scene

brightness over dark surfaces, using empirical relationships
in the spectral variation in surface reflectivity (Kaufmann et
al., 1997; Remer et al., 2005). We use the MODIS collec-
tion 5 dataset (Levy et al., 2007). The MISR algorithm uses
observed differences in the spatial variation of backscattered
radiation with changing viewing angle to self-consistently re-
trieve surface reflectivity and AOD (Martonchik et al., 2002;

Atmos. Chem. Phys., 8, 2999–3014, 2008 www.atmos-chem-phys.net/8/2999/2008/
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Kahn et al., 2005). Global coverage in the absence of clouds
is achieved daily from MODIS and in 6 to 9 days from MISR.

3 Estimate of sulfur emission growth from China

Significant increases in AOD retrieved from the Total Ozone
Mapping Spectrometer (TOMS) over China between 1979–
2000 and the Advanced Very High Resolution Radiome-
ter (AVHRR) off the east coast of China between the peri-
ods 1988–1991 and 2002–2005 are attributed to increased
aerosol sources (Massie et al., 2004; Mishchenko and Ge-
ogdzhayer, 2007). Here we investigate recent retrievals of
AOD from MODIS and MISR and assess their relationship
with Chinese sulfur emissions growth. We first use GEOS-
Chem, with East Asian anthropogenic emissions held at year
2000 levels, to investigate meteorologically induced changes
to AOD.

The top row of Fig. 5 shows mean AOD for 2000–2006
over East Asia from MODIS, MISR and GEOS-Chem. Sim-
ulated AOD includes all major aerosol types (mineral dust,
sulfate-nitrate-ammonium, carbonaceous, and sea-salt). A
region of pronounced enhancement, designated as Region 1,
is apparent in all three datasets. MODIS AOD exceeds
MISR AOD by 12% over this region, consistent with com-
parisons by Abdou et al. (2005). Simulated AOD exceeds
MISR AOD by 22% and exhibits a smoother distribution
than both retrievals, with a more centralized maximum that
reflects the temporally static emissions used. The middle
panel of Fig. 5 presents monthly average AOD within the
Region 1. All three datasets contain a distinct seasonal vari-
ation with a spring maximum and a fall minimum that re-
flects the seasonal variation in dust as noted by Prospero et
al. (2002). Simulated AOD generally captures the retrieved
monthly variation and magnitude as compared to both in-
struments (MODIS:r2=0.46, RMSD=0.09; MISR:r2=0.36,
RMSD=0.12), although the simulation tends to overestimate
springtime AOD. Simulated AOD contributions from dust
(green) and SO=4 (magenta) indicate that dust comprises the
largest fraction of springtime AOD, whereas SO=

4 dominates
during other periods. We focus on the periods between July
and December, as indicated by yellow bars, when an average
56% of total AOD results from the presence of SO=

4 , com-
pared to 17% from dust.

The bottom left panel of Fig. 5 shows the annual mean
difference over July–December between simulated and re-
trieved AOD for Region 1, expressed as a percentage of
the mean retrieved AOD from each instrument over the
six-year, low-dust period. We find a significant trend
in the satellite-model AOD difference for both MODIS
(+4.1%/year,r2=0.72) and MISR (+3.4%/year,r2= 0.54).
We associate this trend with increased SOx emissions, as
SO=

4 dominates simulated AOD in this comparison, simu-
lated SOx emissions are held at 2000 levels and interannual
changes of non-anthropogenic aerosols, such as dust and sea

salt, are accounted for in the simulation. Trends in other
aerosols could play a role, but would be less apparent due to
their smaller AOD over this region during July–December.

The quantitative relationship between AOD and SO2 emis-
sions depends on a number of factors including SO2 oxi-
dation rates, dynamics and aerosol deposition (Dubovik et
al., 2008). We quantify the relationship by conducting sensi-
tivity simulations with increased SOx emissions, and exam-
ining the change in simulated AOD. The bottom right panel
of Fig. 5 shows the calculated relationship between SOx
emissions and AOD over Region 1. The calculated ratio of
1AOD%/1SOx emissions % is nearly linear over this region
during July to December. The annual trends in the difference
between simulated and retrieved AOD correspond to simu-
lations with an annual growth in SOx emissions of 6.2%/yr
for MISR and 9.6%/yr for MODIS. In general agreement, a
comparison of the two bottom-up SOx emission inventories
for 2000 (Streets et al., 2003) and 2006 (http://www.cgrer.
uiowa.edu/EMISSIONDATA new/index16.html) over Re-
gion 1 yields an annual growth of 9.9%. Beyond actual emis-
sion growth, changes between the 2000 and 2006 inventories
include the addition of local inventories not present in, and
improvement and corrections made to, the original 2000 in-
ventory. These factors may account for the slight discrepancy
between the growth estimates. We adopt the 2006 bottom-up
inventory for our standard simulation, as it provides addi-
tional information on the spatial distribution of these SOx
emissions.

4 Campaign average analysis of transpacific transport

The top row of Fig. 6 shows campaign average SOx concen-
trations for the DC-8 over the domain in Fig. 1. Filter pack
and mist chamber measurements of SO=

4 have been com-
bined with corresponding CIMS SO2 measurements. Both
filter pack and mist chamber based measurements show a
maximum around 700 hPa. Heald et al. (2006) attribute the
SO=

4 maximum in the lower free troposphere to preferential
scavenging during transport either in the boundary layer or
during lifting to the upper troposphere. Our standard sim-
ulation of total SOx captures the relative vertical profile of
filter pack based measurements over the domain of the DC-
8, but overestimates their magnitude between 500–900 hPa
with a RMSD of 0.32µg/m3 (mean bias=15%). Mist cham-
ber SO=

4 measurements are scaled by 1.4 to account for
supermicron aerosol as described in Sect. 2.1. Over 500–
900 hPa, the campaign average filter pack measurements are
33% higher than the unscaled mist chamber measurements,
lending support to this scale factor. Mist chamber based
SOx measurements are well captured over the same range
(RMSD=0.20µg/m3, mean bias=7.5%). Direct comparison
of filter pack and mist chamber SO=

4 with simulated values
show weaker agreement (Filter Pack: RMSD=0.47µg/m3,
mean bias=42%; Mist Chamber: RMSD=0.42µg/m3, mean
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Fig. 6. Campaign average aircraft measurements of SOx and SO=4 during INTEX-B, within the boundaries shown in Fig. 1. Simulated cases
include our standard simulation, no East Asian emissions, and no global anthropogenic emissions. All measured and modeled data are at
STP. Mist Chamber, AMS and PILS SO=

4 data are increased by a factor of 1.4 to account for particle size restrictions. Error bars denote one
standard deviation. A small vertical offset is included between datasets for visibility.

bias=42%) than for SOx, likely reflecting an overestimate in
the SO2 oxidation rate (Heald et al., 2005). However, the
bias in SO=

4 found here for the East Pacific is lower than
found by Heald et al. (2005) for the West Pacific, suggesting
a decrease with air mass age as continued SO=

4 production
during transport decreases the ratio of SO2 to SOx.

The bottom panels of Fig. 6 show campaign average
SO=

4 measurements on the C-130 and Cessna, sampled co-
incidently in time and space with simulated concentrations.
Campaign average SO=4 concentrations for the C-130 mea-
surements generally increase with altitude, reaching a maxi-
mum at 600 hPa. The C-130 HR-ToF-AMS measurements
consistently exceed the PILS measurements, indicative of
current uncertainties in aerosol measurement technologies.
During a blind intercomparison conducted 15 May 2006
during a period of DC-8 and C-130 formation flying, the
DC-8 Mist Chamber and C-130 PILS sulfate were in close
agreement (slope=1.00, 1 sigma=0.03µg/m3, range 0.15 to
1.15µg/m3, r2=0.95). The C-130 had considerable freedom
to chase individual events. Despite this, simulated total SO=

4

between 500–900 hPa has an RMSD of 0.40µg/m3 (mean
bias=34%) versus C-130 HR-ToF-AMS measurements and
an RMSD of 0.54µg/m3 (mean bias=59%) versus C-130
PILS measurements. The simulation exhibits the weak en-
hancement at 600 hPa, although fails to represent the lower
concentrations at lower altitudes.

The sampling strategy for the Cessna was to conduct
frequent profiles over Whistler Peak. Such a sampling
strategy facilitated comparison with simulated results, pro-
vided context for the measurements at Whistler summit,
and accommodated the range and duration of the Cessna.
Cessna measurements indicate a fairly uniform vertical pro-
file, with a large standard deviation in the free troposphere
that reflects an oscillation between clean conditions and
plumes. The simulation agrees significantly with size-
correction scaled measured SO=

4 (RMSD=0.13µg/m3, mean
bias=2.5%). While recognizing the potential influence of
both measurement uncertainty and the limitation of apply-
ing a constant size-correction factor across both altitude and
aircrafts, the eastward decrease in the bias between the DC-
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8 and Cessna aircraft may indicate an increasing SO=

4 /SOx
ratio in the measurements.

Figure 6 also shows simulations without anthropogenic
East Asian and all anthropogenic sources for all three air-
craft flight tracks. Anthropogenic East Asian SOx dominates
throughout the DC-8 profiles, comprising 60% of the sim-
ulated mass between 500–900 hPa, with the largest contri-
bution in the lower free troposphere. Other anthropogenic
SOx sources comprise an additional 17%. For the C-130
flight track, closer to North America, the sensitivity simu-
lation attributes 67% of SO=4 to be of Asian origin, with a
peak at 600 hPa. For the Cessna profiles over Whistler, local
sources are most significant below 850 hPa, with the influ-
ence of East Asian anthropogenic emissions increasing with
altitude. We calculate that 56% of the measured SO=

4 be-
tween 500–900 hPa is from East Asia. Model analysis indi-
cates the influence of East Asian sources at higher altitudes in
both C-130 and Cessna versus the DC-8 measurements. This
orographic effect is induced by rising air masses on approach
to North American mountain ranges.

Of interest is the evolution of Asian sulfate over the last
two decades. Figure 7 shows the mean non-seasalt sulfate
profile observed by Andreae et al. (1988) during 4 flights
in May 1985 using the NCAR King Air, covering a part of
the C-130 INTEX-B flight domain. SO=4 concentrations (ad-
justed to STP at 273 K, sum of coarse and fine fractions) in-
creased with altitude below 5 km, from 0.3–0.6µg/m3 in the
marine boundary layer to 0.6–0.8µg/m3 in the cloud con-
vection layer and free troposphere. The 1985 measurements
thus showed lower concentrations, but a similar trend with
increased altitude as was seen in the C-130 measurements.
Mean C-130 measurements between 500–900 hPa are higher
than the 1985 data by 60% from the PILS and by 90% from
HR-ToF-AMS.

Differences in measurement techniques, flight tracks and
meteorology could contribute to the apparent trend. There-
fore we further interpret these observations by conducting a
GEOS-Chem simulation using 1985 emissions and meteorol-
ogy and sampling along the 1985 flights tracks. Global emis-
sions for 1985 are taken from GEIA (Bentovitz et al., 1996),
except for East Asia which are based on Streets et al. (2003,
2006) and scaled following Streets et al. (2000b, 2006). The
simulation reproduces the measurements with an RMSD of
0.25µg/m3 (mean bias=21%) over 500–900 hPa. A sensitiv-
ity simulation without anthropogenic East Asian emissions
reveals that this source contributes 0.14µg/m3 (20%) to the
measured values in 1985, significantly reduced compared to
the 67% along the C-130 flights in 2006.

To account for meteorological variation between 1985 and
2006, we also simulate the 2006 INTEX-B period using
1985 emissions. The relative contribution of East Asian
SO=

4 to the C-130 area (April–May, 34–55◦ N, 123.75–
141.25◦ W, 500–900 hPa) between 1985 and 2006 increased
72% under identical meteorological conditions. The rel-
ative contribution in the King Air (April–May, 45-49◦ N,

Fig. 7. Average aircraft measurements of SO=
4 during 1985 King

Air flights, within the boundary shown in Fig. 1. Simulated cases
of total SO=

4 include our standard simulation, no East Asian emis-
sions, and no global anthropogenic emissions. All measured and
modeled data are at STP. Error bars denote one standard deviation.

123.75–126.25◦ W, 500–900 hPa) and Cessna (April–May,
49–51◦ N, 123.75–121.23◦ W, 500–900 hPa) flight regions
increase similarly by 74% and 85%, respectively.

5 Asian plume development and influence

Figure 8 examines the development of an Asian plume from
18 April 2006 to 25 April 2006. MODIS AOD retrievals
from both the Aqua (1:30 overpass) and Terra (10:30 over-
pass) satellites are plotted with simulation results from the
same period. The GEOS-Chem simulation successfully cap-
tures many of the features associated with the influx event,
which is dominated by dust, and also carries SO=

4 . Both re-
trieval and simulation show this plume beginning from China
on 18 April and stretching across the Pacific Ocean through
21 April, and finally sweeping down from the north while
moving eastward over the North American coast. This event
is further discussed by McKendry et al. (2008).

Figure 9 shows individual Cessna and GEOS-Chem SO=

4
profiles taken between 22 and 25 April, during the arrival
of this Asian plume. The accuracy of individual simulated
profiles, shown in the left panel cluster, varies with RMSD
ranging between 0.39–0.87µg/m3. Simulations can fail to
produce accurate plumes (e.g. Dunlea et al., 20081), but
in this case the simulated plume has been transported too
quickly, with simulated concentrations exceeding measure-
ments on 24 April, but the opposite on 25 April. During
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Fig. 8. The development of an Asian plume between 18–25 April 2006 as retrieved from MODIS and as simulated by GEOS-Chem. White
spaces indicate regions of less than 10 cloud free scenes within a 2◦

×2.5◦ area.

long range transport events, small errors in the meteorologi-
cal fields used by chemical transport models can compound
to create offsets in time and space, making individual model
profiles less representative than average comparisons. The
right panel shows a mean profile comparison during this pe-
riod. Significant agreement (RMSD=0.25µg/m3) suggests
this event was well represented, despite the weaker agree-
ment of individual profiles.

Figure 10 shows simulated average conditions during
April and May 2006. The top panel shows mean concen-
trations at 2 km, where DC-8 SO=4 enhancements were ob-
served. Simulated SO=4 along the North American Pacific
coast show increased concentrations relative to western con-
tinental regions. Major regional anthropogenic sources pro-
duce a large increase in SO=

4 concentrations over eastern
United States and Canada. The middle and bottom panels
show vertical cross-sections of SO=

4 and percentage of SO=4
originating from East Asia, respectively, averaged between
the blue lines of the top panel. The highest overall magni-
tude (>1µg/m3) is again simulated in eastern North Amer-
ica and is predominately from regional emissions. Nonethe-

less, a narrow band of Asian influence in excess of 40% pre-
vails over the continent at 4.5 km, where overall concentra-
tions are∼0.3µg/m3. Along coastal regions, the largest East
Asian influence is found between 1 and 5 km, where 40% of
the overall SO=4 burden originated in East Asia. Interaction
with the planetary boundary layer is facilitated by a combina-
tion of plume subsidence and mountain-induced mixing pro-
cesses typical of southern British Columbia (McKendry et
al., 2001). We calculate that surface concentrations of SO=

4
along the southern Pacific Canadian coast are increased by
0.31µg/m3 (∼30%) as a result of Asian emissions in spring.
We take the mean model bias as compared to the C-130 and
Cessna aircraft to estimate an error of approximately 25% in
this calculation. Heald et al. (2006) found a 0.16µg/m3 en-
hancement in SO=4 over the northwest United States during
periods of Asian influence. Yu et al. (2008) used MODIS
observations to access the seasonal variation in transpacific
pollution aerosol and conclude that springtime transport is
about twice as large as during other seasons.
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Fig. 9. Cessna Q-AMS SO=4 profiles taken 22–25 April 2006. The left-hand panels show individual flight profiles. The right panel shows a
mean profile of the same data. Error bars represent one standard deviation of the data. Q-AMS data are at STP and scaled a factor of 1.4 to
account for particle size restrictions. A small vertical offset is included between the datasets for visibility.

We go on to explore the surface SO=

4 measurements from
the National Air Pollution Surveillance (NAPS) Network in
the Vancouver area for evidence of Asian influence. Fig-
ure 11 shows surface SO=

4 concentrations between April and
May 2006 in the Vancouver area as a function of the mod-
eled percent SO=4 originating in Asia. The two measurement
sites in the Vancouver area, Abbotsford and Vancouver, re-
side in the same model grid box. Black circles correspond to
measurement averages, binned at intervals of 5% simulated
East Asian influence. Individual measurements show sub-
stantial scatter, but linear regression of the binned measure-
ments show a significant correlation (r2=0.82). Binned mea-
surements indicate that an additional 0.32µg/m3 reaches the
surface with each 10% increase in modeled Asian SO=

4 , cor-
roborating that current levels of Asian sulfur emissions are
impacting surface SO=4 concentrations in Canada. Aerosol
transport events are episodic and the daily influence of East
Asian SO=

4 varies dramatically. Figure 11 suggests that
during plumes East Asian SO=4 can contribute more than
1.5µg/m3 to coastal western Canadian concentrations. This
is of similar magnitude to enhancements observed by the
Cessna Q-AMS during plume events shown in Fig. 4.

6 Conclusions

We interpreted a suite of satellite (MODIS and MISR), air-
craft (DC-8, C-130 and Cessna 207) and ground-based mea-
surements (Whistler Peak, NAPS) over the North Pacific
Ocean and western North America in April–May 2006 as
part of the INTEX-B campaign to understand the implica-
tions of long-range transport of Asian aerosol to Canada.

The Canadian component of INTEX-B included 33 flights
from a Cessna 207 aircraft. We compare the Cessna
quadrupole Aerodyne Mass Spectrometer (Q-AMS) mea-
surements with a high resolution time of flight AMS
(HR-ToF-AMS) onboard the C-130 during an intercom-
parison flight, yielding an overall bias of−0.01µg/m3

with appreciable scatter (RMSD=0.6µg/m3) for sulfate
(SO=

4 ) and similar agreement for organics (bias=0.2µg/m3,
RMSD=0.3µg/m3). However, there was a small systematic
difference (<20%) between the C-130 HR-ToF-AMS sulfate
and a co-located PILS measurement of SO=

4 (Dunlea et al.,
20081). We use ground-based measurements (MOUDI) of
the SO=

4 size distribution at Whistler Peak to estimate the
mass in the super-micron range and use a factor of 1.4 to
compensate for this loss. Cessna profiles over Whistler, B.C.
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Fig. 10. Average simulated conditions for April and May 2006.
The top panel shows total SO=4 concentrations at∼2 km altitude.
Middle and bottom panels display the mean cross-sectional total
concentration and East Asian influence, respectively, between the
blue lines in the top panel.

show SO=

4 enhancements of 1–2µg/m3 over 600–700 hPa,
indicative of long-range transport, whereas organic enhance-
ments are largest near the surface, suggesting a local emis-
sion source. We did not detect long-range transport of sig-
nificant organic aerosol from the Cessna data, contrary to ex-
pectations.

We interpret these observations with a global chemical
transport model, GEOS-Chem, to simulate the implications
of anthropogenic activity. We implement a more recent
global bottom-up inventory (EDGAR) and develop updated
scale factors, bringing global anthropogenic emissions from
1998 to at least the year 2003. We also implement current
bottom-up inventories for East Asia for 2006, Canada for
2005 and Europe for 2004.

Retrieved Aerosol Optical Depth (AOD) from MISR and
MODIS during low dust periods (Jul–Dec) are used to eval-
uate the growth of SOx emissions between 2000–2006. We
find a growth in the difference between simulated and re-
trieved AOD of 3.4%/yr (MISR) and 4.1%/yr (MODIS) us-
ing constant anthropogenic emissions sources as represented
by GEOS-Chem. GEOS-Chem calculations of the change in
AOD for a change in SOx emissions indicate a near-linear

Fig. 11. The influence of Asian SO=4 on coastal western Canadian
surface concentrations during April-May 2006. Black circles de-
note mean filter pack sulfate measurements from Canada’s National
Air Pollution Network sites in Vancouver and Abbotsford as aver-
aged at 5% intervals of percent Asian SO=

4 . Dashed line shows
linear best fit. Percent Asian sulfate is simulated using the GEOS-
Chem model.

relationship over East Asia. We estimate the average annual
growth in East Asian SOx emissions to be between 6.2% us-
ing MISR and 9.6% using MODIS, supporting the bottom-up
estimate of an annual increase of 9.9% from 2000 (Streets et
al., 2003) to 2006.

We use this simulation to understand the characteristics of
East Asian outflow as measured by the INTEX-B aircraft.
Over the Pacific Ocean, Asian outflow of SOx is strongest
in the lower troposphere, with enhanced SO=

4 concentrations
of 1–1.5µg/m3 observed by the DC-8 between 700–800 hPa.
The mean C-130 and Cessna aircraft SO=

4 measurements of
1–1.5µg/m3 over 600–800 hPa indicate that Asian plumes
are often elevated by orographic effects along coastal North
America. The simulation generally captures the campaign
mean profile shape of DC-8 SOx, and C-130/Cessna SO=

4
measurements, with RMSD of 0.13–0.54µg/m3 (mean bias
of 2.5–59%). Bias in simulated SO2 oxidation likely con-
tribute to the lower agreement found with respect to the C-
130 measurements. Simulations without Asian emissions re-
veal that long-range transport of SO=

4 dominates campaign-
mean aircraft measurements in the free troposphere.
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We compare the INTEX-B measurements with aircraft
measurements in May 1985 over a similar domain as the
C-130. Measured free tropospheric SO=

4 concentrations in-
crease by 60–90% from 1985 to 2006. Sensitivity simula-
tions for 1985 and without East Asian emissions indicate
that their relative contribution to SO=4 concentrations during
April and May between 500–900 hPa increased by 72–85%
due to emission changes as compared to 1985 depending on
the specific region.

Comparison of individual plumes with aircraft profiles and
MODIS AOD reveals a general consistency, but offsets in
time and space. Campaign-mean simulations show that 50%
of the SO=

4 burden between 1 and 5 km over Whistler is of
anthropogenic Asian origin. These emissions increase sur-
face concentrations along the western Canadian coast by an
average 0.31µg/m3 (∼30%) in spring. This effect is corrob-
orated with surface measurements, where we find an increase
of 0.32µg/m3 with each 10% increase in simulated fraction
of Asian SO=

4 during INTEX-B, with episodic enhancements
of more than 1.5µg/m3.

A better understanding of SO2 oxidation is still needed.
Previous work (Heald et al., 2006) and our analysis indicate
an overestimate in the simulated SO2 oxidation rate. Devel-
opment of size-resolved aerosol simulations and SO=

4 instru-
ments that sample larger particles with high time resolution
would facilitate model-measurement comparison. Improved
understanding of inter-instrument SO=

4 measurements would
be valuable.
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