Atmos. Chem. Phys., 8, 2569-2594, 2008
© Author(s) 2008. This work is distributed
under the Creative Commons Attribution 3.0 License.
CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations
C. Clerbaux1, M. George1, S. Turquety1, K. A. Walker2,3, B. Barret4, P. Bernath2,5, C. Boone2, T. Borsdorff6, J. P. Cammas4, V. Catoire7, M. Coffey8, P.-F. Coheur9, M. Deeter8, M. De Mazière10, J. Drummond11, P. Duchatelet12, E. Dupuy2, R. de Zafra13, F. Eddounia1, D. P. Edwards8, L. Emmons8, B. Funke14, J. Gille8, D. W. T. Griffith15, J. Hannigan8, F. Hase16, M. Höpfner16, N. Jones15, A. Kagawa17, Y. Kasai18, I. Kramer16, E. Le Flochmoën4, N. J. Livesey19, M. López-Puertas14, M. Luo20, E. Mahieu12, D. Murtagh21, P. Nédélec4, A. Pazmino1, H. Pumphrey22, P. Ricaud4, C. P. Rinsland23, C. Robert7, M. Schneider16, C. Senten10, G. Stiller16, A. Strandberg21, K. Strong3, R. Sussmann6, V. Thouret4, J. Urban21, and A. Wiacek3
1Université Paris 6, CNRS, Service d'Aéronomie/IPSL, Paris, France
2Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1, Canada
3Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7, Canada
4Laboratoire d'Aérologie UMR 5560, Observatoire Midi-Pyrénées, Toulouse, France
5Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
6Forschungszentrum Karlsruhe, IMK-IFU, Garmisch-Partenkirchen, Germany
7Laboratoire de Physique et Chimie de l'Environnement, CNRS, Université d'Orléans, Orléans, France
8National Center for Atmospheric Research, Boulder, CO, USA
9Spectroscopie de l'atmosphère, Chimie Quantique et Photophysique, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium. P.-F. Coheur is Research associate with the FRS-F.N.R.S, Belgium
10Belgian Institute for Space Aeronomy, Brussels, Belgium
11Department of Physics & Atmospheric Science, Dalhousie University, Halifax, Canada
12Université de Liège ULg, Institute of Astrophysics and Geophysics, Liège, Belgium
13Department of Physics and Astronomy, State Univ. of New York at Stony Brook, USA
14Instituto de Astrofísica, Andalucía (CSIC), Granada, Spain
15Department of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia
16Institut für Meteorologie und Klimaforschung, Forschungszentrum Karlsruhe, Germany
17Fujitsu FIP Corporation, Tokyo, Japan
18National Institute of Information and Communications Technology, Tokyo, Japan
19Microwave Atmospheric Science Team, Jet Propulsion Laboratory, CA, USA
20Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
21Chalmers University of Technology, Göteborg, Sweden
22School of GeoSciences, Edinburgh, Scotland
23NASA Langley Research Center, Hampton, Virginia, USA

Abstract. The Atmospheric Chemistry Experiment (ACE) mission was launched in August 2003 to sound the atmosphere by solar occultation. Carbon monoxide (CO), a good tracer of pollution plumes and atmospheric dynamics, is one of the key species provided by the primary instrument, the ACE-Fourier Transform Spectrometer (ACE-FTS). This instrument performs measurements in both the CO 1-0 and 2-0 ro-vibrational bands, from which vertically resolved CO concentration profiles are retrieved, from the mid-troposphere to the thermosphere. This paper presents an updated description of the ACE-FTS version 2.2 CO data product, along with a comprehensive validation of these profiles using available observations (February 2004 to December 2006). We have compared the CO partial columns with ground-based measurements using Fourier transform infrared spectroscopy and millimeter wave radiometry, and the volume mixing ratio profiles with airborne (both high-altitude balloon flight and airplane) observations. CO satellite observations provided by nadir-looking instruments (MOPITT and TES) as well as limb-viewing remote sensors (MIPAS, SMR and MLS) were also compared with the ACE-FTS CO products. We show that the ACE-FTS measurements provide CO profiles with small retrieval errors (better than 5% from the upper troposphere to 40 km, and better than 10% above). These observations agree well with the correlative measurements, considering the rather loose coincidence criteria in some cases. Based on the validation exercise we assess the following uncertainties to the ACE-FTS measurement data: better than 15% in the upper troposphere (8–12 km), than 30% in the lower stratosphere (12–30 km), and than 25% from 30 to 100 km.

Citation: Clerbaux, C., George, M., Turquety, S., Walker, K. A., Barret, B., Bernath, P., Boone, C., Borsdorff, T., Cammas, J. P., Catoire, V., Coffey, M., Coheur, P.-F., Deeter, M., De Mazière, M., Drummond, J., Duchatelet, P., Dupuy, E., de Zafra, R., Eddounia, F., Edwards, D. P., Emmons, L., Funke, B., Gille, J., Griffith, D. W. T., Hannigan, J., Hase, F., Höpfner, M., Jones, N., Kagawa, A., Kasai, Y., Kramer, I., Le Flochmoën, E., Livesey, N. J., López-Puertas, M., Luo, M., Mahieu, E., Murtagh, D., Nédélec, P., Pazmino, A., Pumphrey, H., Ricaud, P., Rinsland, C. P., Robert, C., Schneider, M., Senten, C., Stiller, G., Strandberg, A., Strong, K., Sussmann, R., Thouret, V., Urban, J., and Wiacek, A.: CO measurements from the ACE-FTS satellite instrument: data analysis and validation using ground-based, airborne and spaceborne observations, Atmos. Chem. Phys., 8, 2569-2594, doi:10.5194/acp-8-2569-2008, 2008.
Search ACP
Final Revised Paper
Discussion Paper