Atmos. Chem. Phys., 7, 4249-4256, 2007
www.atmos-chem-phys.net/7/4249/2007/
doi:10.5194/acp-7-4249-2007
© Author(s) 2007. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
First direct observation of the atmospheric CO2 year-to-year increase from space
M. Buchwitz, O. Schneising, J. P. Burrows, H. Bovensmann, M. Reuter, and J. Notholt
Institute of Environmental Physics (IUP), University of Bremen FB1, Bremen, Germany

Abstract. The reliable prediction of future atmospheric CO2 concentrations and associated global climate change requires an adequate understanding of the CO2 sources and sinks. The sparseness of the existing surface measurement network limits current knowledge about the global distribution of CO2 surface fluxes. The retrieval of CO2 total vertical columns from satellite observations is predicted to improve this situation. Such an application however requires very high accuracy and precision. We report on retrievals of the column-averaged CO2 dry air mole fraction, denoted XCO2, from the near-infrared nadir spectral radiance and solar irradiance measurements of the SCIAMACHY satellite instrument between 2003 and 2005. We focus on northern hemispheric large scale CO2 features such as the CO2 seasonal cycle and show - for the first time - that the atmospheric annual increase of CO2 can be directly observed using satellite measurements of the CO2 total column. The satellite retrievals are compared with global XCO2 obtained from NOAA's CO2 assimilation system CarbonTracker taking into account the spatio-temporal sampling and altitude sensitivity of the satellite data. We show that the measured CO2 year-to-year increase agrees within about 1 ppm/year with CarbonTracker. We also show that the latitude dependent amplitude of the northern hemispheric CO2 seasonal cycle agrees with CarbonTracker within about 2 ppm with the retrieved amplitude being systematically larger. The analysis demonstrates that it is possible using satellite measurements of the CO2 total column to retrieve information on the atmospheric CO2 on the level of a few parts per million.

Citation: Buchwitz, M., Schneising, O., Burrows, J. P., Bovensmann, H., Reuter, M., and Notholt, J.: First direct observation of the atmospheric CO2 year-to-year increase from space, Atmos. Chem. Phys., 7, 4249-4256, doi:10.5194/acp-7-4249-2007, 2007.
 
Search ACP
Final Revised Paper
Citation
Discussion Paper
Share