Atmos. Chem. Phys., 7, 3055-3069, 2007
www.atmos-chem-phys.net/7/3055/2007/
doi:10.5194/acp-7-3055-2007
© Author(s) 2007. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Understanding the kinetics of the ClO dimer cycle
M. von Hobe1, R. J. Salawitch2, T. Canty2, H. Keller-Rudek3, G. K. Moortgat3, J.-U. Grooß1, R. Müller1, and F. Stroh1
1Forschungszentrum Jülich GmbH, Institute for Chemistry and Dynamics of the Geosphere (ICG-1), Jülich, Germany
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
3Max-Planck-Institute for Chemistry, Atmospheric Chemistry Division, Mainz, Germany

Abstract. Among the major factors controlling ozone loss in the polar vortices in winter/spring is the kinetics of the ClO dimer catalytic cycle. Here, we propose a strategy to test and improve our understanding of these kinetics by comparing and combining information on the thermal equilibrium between ClO and Cl2O2, the rate of Cl2O2 formation, and the Cl2O2 photolysis rate from laboratory experiments, theoretical studies and field observations. Concordant with a number of earlier studies, we find considerable inconsistencies of some recent laboratory results with rate theory calculations and stratospheric observations of ClO and Cl2O2. The set of parameters for which we find the best overall consistency – namely the ClO/Cl2O2 equilibrium constant suggested by Plenge et al. (2005), the Cl2O2 recombination rate constant reported by Nickolaisen et al. (1994) and Cl2O2 photolysis rates based on absorption cross sections in the range between the JPL 2006 assessment and the laboratory study by Burkholder et al. (1990) – is not congruent with the latest recommendations given by the JPL and IUPAC panels and does not represent the laboratory studies currently regarded as the most reliable experimental values. We show that the incorporation of new Pope et al. (2007) Cl2O2 absorption cross sections into several models, combined with best estimates for other key parameters (based on either JPL and IUPAC evaluations or on our study), results in severe model underestimates of observed ClO and observed ozone loss rates. This finding suggests either the existence of an unknown process that drives the partitioning of ClO and Cl2O2, or else some unidentified problem with either the laboratory study or numerous measurements of atmospheric ClO. Our mechanistic understanding of the ClO/Cl2O2 system is grossly lacking, with severe implications for our ability to simulate both present and future polar ozone depletion.

Citation: von Hobe, M., Salawitch, R. J., Canty, T., Keller-Rudek, H., Moortgat, G. K., Grooß, J.-U., Müller, R., and Stroh, F.: Understanding the kinetics of the ClO dimer cycle, Atmos. Chem. Phys., 7, 3055-3069, doi:10.5194/acp-7-3055-2007, 2007.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share