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Abstract. The strength of the stratospheric wave driving
during northern winter is often quantified by the January–
February mean poleward eddy heat flux at 100 hPa, averaged
over 40◦–80◦ N (or a similar area and period). Despite the
dynamical and chemical relevance of the wave driving, the
causes for its variability are still not well understood. In this
study, ERA-40 reanalysis data for the period 1979–2002 are
used to examine several factors that significantly affect the
interannual variability of the wave driving. The total pole-
ward heat flux at 100 hPa is poorly correlated with that in
the troposphere, suggesting a decoupling between 100 hPa
and the troposphere. However, the individual zonal wave-1
and wave-2 contributions to the wave driving at 100 hPa do
exhibit a significant coupling with the troposphere, predom-
inantly their stationary components. The stationary wave-1
contribution to the total wave driving significantly depends
on the latitude of the stationary wave-1 source in the tropo-
sphere. The results suggest that this dependence is associated
with the varying ability of stationary wave-1 activity to enter
the tropospheric waveguide at mid-latitudes. The wave driv-
ing anomalies are separated into three parts: one part due
to anomalies in the zonal correlation coefficient between the
eddy temperature and eddy meridional wind, another part
due to anomalies in the zonal eddy temperature amplitude,
and a third part due to anomalies in the zonal eddy merid-
ional wind amplitude. It is found that year-to-year variability
in the zonal correlation coefficient between the eddy tem-
perature and the eddy meridional wind is the most dominant
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factor in explaining the year-to-year variability of the pole-
ward eddy heat flux.

1 Introduction

According to the downward-control principle, the strato-
spheric residual meridional circulation at any level is con-
trolled by the vertically-integrated zonal force due to break-
ing Rossby and gravity waves above that level (Haynes et al.,
1991). The breaking waves deposit westward angular mo-
mentum into the relative and planetary angular momentum
“reservoirs”, causing a westward acceleration and a pole-
ward displacement of the air (e.g., Andrews et al., 1987).
In the low-frequency limit, the westward acceleration is zero
and the meridional circulation is referred to as the Brewer-
Dobson circulation (e.g., Shepherd, 2000). The term “down-
ward control” can, however, be somewhat misleading, since
it is predominantly the wave activity emanating from below
that determines the amount of angular momentum deposited
aloft.

The net zonal-mean upward flux of wave activity is rep-
resented by the upward componentFz of the Eliassen-Palm
(E-P) flux, which for quasigeostrophic flow is proportional
to the zonal-mean poleward eddy heat flux[v∗T ∗

], where
the square brackets denote the zonal average and the aster-
isk denotes the deviation thereof (e.g. Andrews et al., 1987;
Newman and Nash, 2000). In the lower stratosphere,[v∗T ∗

]

(and thereforeFz) exhibits a strong, positive correlation with
the tendency of total ozone at mid- and high latitudes during
northern winter (e.g., Fusco and Salby, 1999; Randel et al.,
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2002). Also, during late northern winter the midlatitude eddy
heat flux in the lower stratosphere is highly and positively
correlated with the temperature in early March at high lati-
tudes, and consequently with the strength of the polar vortex
(e.g., Newman et al., 2001; Polvani and Waugh, 2004). Both
observations can be explained by the wave-induced poleward
transport of ozone-rich air from the tropical source and the
subsequent adiabatic compression at higher latitudes.

This fundamental link between the poleward eddy heat
flux and the dynamics and chemistry of the stratosphere is
now well understood and also quantitatively employed as
a diagnostic to validate coupled chemistry-climate models
(CCMs) (Austin et al., 2003; Eyring et al., 2005). Austin
et al. used the[v∗T ∗

] field at 100 hPa averaged for January–
February over 40◦–80◦ N, hereafter referred to asH100, as a
measure of the net upward flux of midwinter wave activity in
the lower stratosphere. They evaluated several CCMs with
respect toH100, the polar stratospheric temperatures in early
spring, and the (almost linear) relationship between both di-
agnostics. Since almost all of the planetary wave activity
crosses the 100 hPa level between 40◦–80◦ N (Hu and Tung,
2003),H100 indeed provides a good measure of the net to-
tal wave activity propagating into the stratosphere. Several
studies have been performed to analyze trends inH100 (or a
similar diagnostic) over the last decades, and to predict fu-
ture trends. Hu and Tung (2003) found a significant down-
ward trend over 1979–2002 for[v∗T ∗

] at 100 hPa, averaged
over 50◦–90◦ N and January to March. Austin et al. (2003)
compared futureH100 trends in a number of enhanced-CO2
climate simulations, and found for most models a slightly
negative trend over the next few decades, although at best of
marginal statistical significance. One of the models showed
a highly significant positive trend. For a doubled CO2 cli-
mate, Sigmond et al. (2004) computed a significant increase
of the Northern Hemisphere (NH) stratospheric residual cir-
culation during winter, corresponding to an increase of the
poleward eddy heat flux. These examples illustrate that fu-
ture predictions ofH100 are very uncertain. However, in a re-
cent multi-model study by Butchart et al. (2006), increasing
greenhouse gas concentrations were found to yield an overall
strengthening of the Brewer-Dobson circulation and the as-
sociated wave driving, with the strongest trend in NH winter.
Butchart et al. conclude that it remains an important future
task to identify the causes of the increase in wave driving.
Thus, despite the fact that it is widely acknowledged that the
stratospheric wave driving has a large impact on the dynam-
ics and chemistry of the stratosphere, the causes for its trends
and variability are still not well understood.

In the present study,H100 is used as a measure of the net
total midwinter wave activity that propagates from the tropo-
sphere into the stratosphere, following Austin et al. (2003),
and Eyring et al. (2005). Our analysis puts the emphasis on
the interannual variability ofH100, in order to obtain a better
understanding of the causes of this observed variability, at
both the interannual and the decadal timescale. Year-to-year

variations inH100 can be attributed to many factors. The
strength of the tropospheric wave source is an obvious fac-
tor, but also the shape of the source spectrum determines the
amount of wave activity that reaches 100 hPa, as is described
by the Charney-Drazin criterion (Charney and Drazin, 1961).
This criterion states that stationary planetary waves can only
propagate upward in a westerly zonal-mean flow that is not
too strong. Only the longest waves can propagate through
stronger westerlies, which implies that during winter only
the longest waves can propagate into the stratosphere. The
background zonal-mean flow determines the properties of
this low-pass filter, and therefore also affects the interannual
variability of H100. The main goal of the present study is
to investigate to what extent the year-to-year variability in
H100 is affected by several factors. The factors that are ex-
amined include the strength of the total upward wave activ-
ity flux in the troposphere, the shape of the wave activity
spectrum, the latitude and height of the wave source, and the
refractive properties of the background flow. It is also ex-
amined whether the zonal correlation coefficient between the
meridional wind and the temperature has a significant effect
on the interannual variability ofH100. Our analysis is based
on ERA-40 reanalysis data for the period of 1979–2002. In
Sect. 3, estimated values are often presented along with an
error bar. These represent the associated standard deviations.

The structure of the paper is as follows. Section 2 gives a
description of the data sources and discusses various ways of
decomposing the poleward eddy heat flux. The main results
are given in Sect. 3, and a summary and discussion of the
results is presented in Sect. 4.

2 Data and method

2.1 Data

We use 6-hourly temperature and horizontal wind fields for
24 years (1979–2002) of ERA-40 reanalysis data (Simmons
and Gibson, 2000). Although the ERA-40 dataset starts in
1957, we have only included the satellite era, from 1979 on-
wards, in our analysis. For this period, the global observa-
tion data coverage is considered to be good (Uppala et al.,
2005). ERA-40 is produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF). The meteo-
rological fields were retrieved for a lat-lon grid of 2.5◦

×2.5◦

between 0◦–90◦ N, at 23 pressure levels between 1000 and
1 hPa.

2.2 Linear regression analysis

The total poleward eddy heat flux can be decomposed into
the sum of several components, such as the stationary and
transient wave components. The impact of each component
on the interannual variability of the total heat flux can be
evaluated by performing a linear regression analysis. This
can be understood as follows. It can easily be shown that if
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y≡
∑

xi , then the variance ofy equals the sum of the co-
variances betweeny and thexi , i.e., var(y)=

∑
cov(xi, y).

Thus, cov(xi, y) can be interpreted as the contribution of
xi to var(y). If we definebi≡cov(xi, y)var−1(y), where∑

bi=1, thenbi is the regression coefficient for the linear
least-squares fit given bỹxi=ai+biy. It should be noted that
the correlation coefficientri betweeny andxi can be large,
while the associated value ofbi is small. For this reason, it
is useful to consider bothbi andri . In the present study,y
represents the total heat flux and thexi represent the various
components of the total heat flux (see Sect. 2.3). Hereafter
the phrase “a linear regression ofv1 with v2 is performed”
implies thatv1 is the independent andv2 is the dependent
variable.

2.3 Decompositions of the heat flux

The total poleward eddy heat flux, averaged over space and
time, can be decomposed by separating the eddy meridional
wind and eddy temperature into a stationary and a transient
part. If we denote the temporal average over January and
February by an overbar, the deviation thereof by a prime, and
the cosine-latitude weighted spatial average between 40◦–
80◦ N by angle brackets, we can writeH at a certain pressure
level as

H ≡< v∗T ∗ > = < v̄∗T̄ ∗ > + < v′∗T ′∗ >, (1)

whereH at 100 hPa was previously denoted byH100. The
asterisk denotes the deviation of the zonal mean. The r.h.s.
terms of Eq. (1) thus describe the contribution toH by the
stationary and transient eddies, respectively.

In addition to the temporal decomposition in Eq. (1), a
spatial decomposition can be made by discriminating be-
tween the individual zonal wavenumber components of the
heat flux. The zonal wave component of the total eddy heat
flux is calculated as the product of the wave components of
v andT , vs andTs (e.g., Newman and Nash, 2000). This
yields

H=

∑
s≥1

< vsTs >, (2)

where the subscript s denotes the zonal wave-s component.
Combining Eqs. (1) and (2) yields

H=

∑
s≥1

< v̄s T̄s > +

∑
s≥1

< v′
sT

′
s >. (3)

The impact of these individual stationary and transient wave
components on the interannual variability of the total heat
flux will be evaluated by a linear regression analysis in the
next section.

A different way of decomposing the total eddy heat flux,
is by noting that[v∗T ∗

] can be expressed as

[v∗T ∗
]=rv,T σvσT , (4)

whererv,T is the zonal correlation coefficient, andσv and
σT are the zonal standard deviations ofv andT . If v or T

would consist of only one wave component, then their wave
amplitudes would be given by

√
2σv and

√
2σT , respectively,

andrv,T would be equal to cos1ϕ, where1ϕ is the phase
difference between thev and theT wave patterns. There-
fore, rv,T might be considered as the cosine of the ‘effective
phase difference’ betweenv andT for the total spectrum of
waves, with

√
2σv and

√
2σT representing the effectivev and

T amplitudes, respectively. The largerrv,T , the smaller the
effective phase difference between thev andT fields, and the
more efficiently heat is transported poleward by the waves.
To investigate both the qualitative and the quantitative effects
of year-to-year variations inrv,T , σv, andσT on the interan-
nual variability ofH100, we use the following approach (e.g.,
Siegmund, 1995). First, we rewrite the average of Eq. (4)
over 40◦–80◦ N and January–February as follows:

H≡<rv,T σvσT >≡<rv,T ><σv><σT >+Ẽ≡H̃+Ẽ, (5)

whereẼ denotes the error that is introduced by neglecting
the zonal and temporal cross-correlations betweenrv,T , σv,
andσT . The validity of the approximationH100≈H̃100 will
be discussed in Sect. 4. Dropping the angular brackets and
the overbars, denoting the 24-year mean by a superscriptm

and the deviation thereof by a1, 1H̃ can be linearized as:

1H̃≡1Ĥ+1Ê≡σm
v σm

T 1rv,T +σm
T rm

v,T 1σv+σm
v rm

v,T 1σT +1Ê, (6)

where1Ê denotes the error that arises from the linearization.
If Eqs. (5) and (6) are combined, we obtain

1H≡σm
v σm

T 1rv,T +σm
T rm

v,T 1σv+σm
v rm

v,T 1σT +1Ê+1Ẽ. (7)

Equation (7) will be used to analyze the contribution to the
interannual variability ofH100by the interannual variabilities
of rv,T , σv, andσT .

3 Results

3.1 Timeseries ofH100

The timeseries ofH100 (1979–2002) is displayed as the thick
solid line with filled circles in Fig. 1. During this 24-year pe-
riod, H100 ranged between 11.2 and 19.2 K m s−1, and the
average value ofH100 was 15.1±0.5 K m s−1. There is a
slightly negative trend inH100, but the trend is not statis-
tically significant (93.2% confidence level). Hu and Tung
(2003) did find a highly significant downward trend over
1979–2002 in the vertical EP-flux component north of 50◦ N
for the January–March period, which was suggested to be
due to the effect of Arctic ozone depletion during late winter
and spring. This effect is likely smaller forH100, which is the
average over the January–February period. If we regardH100
as the sum of its zonal wave-s components as expressed by
Eq. (2), we find that the s = 1-3 components ofH100 account
for more than 90% ofH100. The first three wave components

www.atmos-chem-phys.net/7/2575/2007/ Atmos. Chem. Phys., 7, 2575–2584, 2007



2578 A. J. Haklander et al.: Interannual variability stratospheric wave driving

1980 1985 1990 1995 2000
Year (Jan-Feb average)

0

5

10

15

20

25

Po
le

w
ar

d 
ed

dy
 h

ea
t f

lu
x 

40
-8

0N
 [

K
 m

/s
]

H
100

 (all waves)

H
100

 (wave 1)

H
100

 (wave 2)

H
100

 (wave 3)

Fig. 1. Poleward eddy heat flux at 100 hPa, averaged over 40◦–
80◦ N and January–February, for the years 1979–2002. The sum
of all wave contributionsH100 is shown, as well as the separate
wavenumber 1–3 components ofH100.

Table 1. Linear regression coefficients± their standard error, and
correlation coefficients for the linear regression ofH100 with its
total, stationary and transient s=1–5 components. The linear regres-
sion is performed over 1979–2002.

s
Regr. coeff. (bi ) Corr. coeff. (r i )

Tot ±σ Stat±σ Tran±σ Tot Stat Tran

1 0.74±0.15 0.56±0.23 0.18±0.14 0.73 0.47 0.26
2 0.12±0.16 0.06±0.16 0.06±0.08 0.16 0.08 0.15
3 0.09±0.08 0.02±0.08 0.08±0.05 0.24 0.05 0.30
4 0.00±0.03 –0.02±0.02 0.02±0.03 0.01 –0.19 0.13
5 0.00±0.02 0.00±0.00 –0.01±0.02 –0.04 0.23 –0.09
all 1 0.63±0.16 0.37±0.16 1 0.65 0.46

of H100 are also shown in Fig. 1. Both the variance and the
24-year average decrease with increasing wavenumber. For
the majority of the years, variations inH100 seem to be dom-
inated by the wave-1 variations, indicated by the line with
open circles in Fig. 1. A relatively constant factor is that the
wave-1 and wave-2 variations tend to be opposite. The cor-
relation coefficient for the wave-1 and wave-2 components
is r=−0.42, which is significant at a 95.8% confidence level.
The separate s=1, 2, and 3 components ofH100 all exhibit
a slightly negative trend over 1979–2002, but the statistical
significance of these trends is well below the 95% confidence
level.

3.2 Wave contributions to interannual variability ofH100

To further examine the interannual variability ofH100, we
decomposeH100 into its stationary and transient wave com-
ponents, as expressed by Eq. (3). Taking H100 as the in-
dependent variable, the linear regression coefficientbi for

Fig. 2. Correlation coefficients ofH100 with <v∗T ∗>NH . Corre-
lation coefficients are calculated over the years 1979–2002.

the regression ofH100 with its stationary or transient wave
component represents the relative contribution by that wave
component to the total variance ofH100, as discussed in
Sect. 2. Table 1 shows the regression coefficients and the
corresponding correlation coefficients for the total (station-
ary plus transient), stationary, and transient wave 1–5 compo-
nents ofH100. Using a Student’st-test, we find for a sample
size of 24, that the correlation coefficientri is significantly
different from zero at a>95%, 99%, or 99.9% confidence
level if |ri | > 0.40, 0.52 or 0.63, respectively. The sum of
the regression coefficients for the total wave 1–5 contribu-
tion to H100 is 0.95±0.05, with a corresponding correlation
coefficientri=0.996 (not shown). Therefore, wavenumbers
6 and higher can be neglected in the analysis of the inter-
annual variability ofH100. In fact, almost all of the inter-
annual variability ofH100 is due to s=1–3, with a combined
regression coefficient ofbi=0.96±0.06 andri=0.98. Only re-
taining s=1,2 yieldsbi=0.86±0.11 andri=0.88. We can thus
state that about 85% of the interannual variability ofH100
can be attributed to its s=1,2 components. When analyzing
the interannual variability ofH100, it is sufficient to only con-
sider wavenumbers s=1–3, or perhaps even s=1,2. The bot-
tom row of Table 1 clearly shows that the interannual vari-
ability of H100 is dominated by the stationary waves, with
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bi=0.63±0.16 andri=0.65. However, the correlation coeffi-
cient ofH100 with its transient component is also significant
at the 97.6% confidence level.

3.3 Vertical coupling

As described in the introduction,H100 is proportional to the
total net wave activity flux emanating from below between
40◦ N and 80◦ N at the 100 hPa level. Most of the planetary
wave activity that constitutesH100 has propagated upward
from its tropospheric source, and therefore, it is expected
that H100 has a significant positive correlation coefficient
with the poleward eddy heat flux at levels below (and above)
100 hPa. To verify this, we examine the amount of verti-
cal coupling between 100 hPa and other levels. We do this
by calculating the vertical profile of the correlation coeffi-
cient ofH100 with <v∗T ∗>NH , which we define as the 20◦–
90◦ N average of[v∗T ∗], at levels from 1000 hPa to 1 hPa.
We compute the correlation coefficients with<v∗T ∗>NH ,
since the wave activity flux contributing toH100 may have
partially originated from, or may propagate into, latitudes
outside the 40◦–80◦ N band. The correlation coefficient pro-
file is shown in Fig. 2. At 100 hPa,H100 is highly correlated
with <v∗T ∗>NH (r=0.95), suggesting that the 100 hPa wave
activity outside the 40◦–80◦ N area is relatively small. This
is confirmed by the fact thatH100 accounts for about 90%
of <v∗T ∗>NH at 100 hPa in the 1979–2002 period. There-
fore, to simplify the interpretation of our results, we neglect
the 100 hPa upward wave activity flux at latitudes outside the
40◦–80◦ N window. In Fig. 2, we see that the level of maxi-
mum correlation coefficient betweenH100 and<v∗T ∗>NH

is found at 70 hPa rather than 100 hPa. Above 70 hPa, the
correlation coefficient gradually decreases to marginally sig-
nificant values near the stratopause∼1 hPa. Below 100 hPa,
the correlation coefficient falls off quite rapidly, and is not
significant (|r| <0.40) below 200 hPa. Thus, there exists a
decoupling between variations in the total upward flux of
wave activity in the troposphere (below 200 hPa) and vari-
ations at 100 hPa. Assuming that the wave sources are pre-
dominantly located in the troposphere, this decoupling can
be understood as follows. Suppose an amount of wave activ-
ity propagates upward in the NH at some tropospheric pres-
sure levelp during January–February. A fractionαp of this
wave activity is absorbed below 100 hPa, whereαp lies be-
tween 0 and 1. Assuming that no wave activity crosses the
equator, the remaining fraction of the wave activity (1-αp)

thus reaches the 100-hPa level and contributes toH100. If
αp is less than one and independent of time, then the corre-
lation coefficient betweenH100 and the wave activity flux at
pressure levelp will be one. On the other hand, ifαp has
a large interannual variability, the correlation coefficient will
be small.

For a plane and conservative planetary wave, the zonal
wavenumber s and the frequency remain constant along its
path (or “ray”) in the meridional plane (e.g., Karoly and

Hoskins, 1982). Therefore, it makes sense to repeat the pre-
vious analysis for each individual zonal wave component.
To examine the amount of vertical coupling as a function of
zonal wavenumber (stationary plus transient), we compute
the correlation coefficients of the wave-s component ofH100
with the (same) wave-s component of<v∗T ∗>NH at other
levels. We perform this analysis for the individual wavenum-
bers 1 to 5 and 6+, separately. The results are shown in
Fig. 3a. The s=1 component of<v∗T ∗>NH is significantly
correlated with the s=1 component ofH100 at 500 hPa, and at
all levels above 400 hPa. The s=2 component of<v∗T ∗>NH

exhibits a significant correlation with the s=2 component of
H100 throughout the troposphere and the stratosphere. Note
that the wave-2 correlation coefficient reaches a minimum
in the mid-troposphere but that the correlation coefficients
for s=2 are statistically significant at all levels below 1 hPa.
For waves withs> 2, the correlation coefficients generally
only exceed the 95% significance level between 250 hPa and
50 hPa. Thus, the lack of correlation we saw in Fig. 2 be-
tween the total upward flux of wave activity in the tropo-
sphere and that at 100 hPa is also observed for the s>2 flux
components, but not (entirely) for s=1,2. This result implies
that a significant part of the interannual variability in the s
= 1,2 components ofH100 is due to year-to-year variations
in the strength of the s=1,2 wave source in the troposphere.
There is no significant correlation for thes>2 flux compo-
nents, since the refractive index for those waves exhibits a
vertical layer of negative values in the lower stratosphere
(Fig. 5b). Therefore, meridional refraction and reflection of
thes>2 waves is taking place below 100 hPa, so thatH100 is
dominated by waves 1 and 2.

We have just shown that the separate s=1,2 components
of H100, to which about 85% of the interannual variabil-
ity of H100 can be attributed, are significantly correlated
with the separate s=1,2 components of<v∗T ∗>NH in the
troposphere. But to what extent can the interannual vari-
ability of the totalH100 be attributed to year-to-year varia-
tions in the separate s=1 and s=2 components (or higher) of
<v∗T ∗>NH in the troposphere? To answer this question, we
examine the correlation coefficient ofH100 (i.e., the sum of
all wave components) with the separate wave components of
<v∗T ∗>NH . The results are shown in Fig. 3b, where the
wavenumber of the pressure-dependent< v∗T ∗ >NH com-
ponent is given along the horizontal axis. At levels below
200 hPa, the s=1,2 components of<v∗T ∗>NH are not sig-
nificantly correlated withH100. In fact, none of the wave
components is. However, in the upper stratosphere, thes=4
component of<v∗T ∗>NH exhibits a remarkably strong cor-
relation withH100. It is interesting to compare Figs. 3a and
3b. We observe in Fig. 3a that the wave-4 component of
<v∗T ∗>NH in the upper stratosphere is not at all correlated
with the wave-4 component ofH100. However, Fig. 3b shows
that the correlation coefficient with the totalH100 is highly
significant for the wave-4 component of<v∗T ∗>NH in the
upper stratosphere (r=0.58 at 2 hPa, 99.7% confidence level).
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Fig. 3. Correlation coefficients of(a) the zonal wave-s component ofH100, and(b) H100, with the zonal wave-s component of<v∗T ∗>NH .
Correlation coefficients are calculated over 1979–2002, and the areas with>95% confidence levels are shaded.

The results suggest that wavenumber 4 is a preferred mode
for the breaking of very long planetary waves in the upper
stratosphere.

3.4 Correlation patterns in the meridional plane

Thusfar, we have only considered averages over 40◦–80◦ N
and averages over the Northern Hemisphere north of 20◦ N.
In the previous subsection we mentioned thatαp also de-
pends on the latitude at which the waves propagate upward.
Therefore, we next examine where the zonal-mean upward
wave-activity flux, which is proportional to[v∗T ∗], is sig-
nificantly correlated withH100. The latitude- and pressure-
dependent correlation coefficient ofH100 with [v∗T ∗] is
shown in Fig. 4a. The highest correlation coefficient is found
at 100 hPa and 62.5◦ N (r=0.87). The decoupling between
the total upward wave-activity flux at 100 hPa and that in the
troposphere (Fig. 2) is also visible in Fig. 4a:H100 is not
significantly correlated with[v∗T ∗] in the lower and middle
troposphere. We previously saw that the s=1,2 components
of H100 significantly correlate with the same wave-s com-
ponents of<v∗T ∗>NH at some level in the mid- and lower
troposphere. Figure 4b shows that the wave-1 component
of H100 is significantly correlated with the wave-1 compo-
nent of[v∗T ∗] in the troposphere, between about 40◦ N and
60◦ N. Note that the meridionally confined correlation coeffi-
cient maximum in the troposphere tilts poleward with height.
A possible explanation for this correlation coefficient maxi-

mum would be the presence of a waveguide, through which
the wave-1 activity is ducted to 100 hPa (e.g., Karoly and
Hoskins, 1982). Since a waveguide can be identified as a
ridge in the refractive index field, we verify this by comput-
ing the climatological January–February pattern of the re-
fractive index squared for s=1, which is shown in Fig. 5a.
The wave-1 correlation coefficient maximum is roughly de-
noted by the dashed line. We see that the refractive index in-
deed has a ridge in the mid-latitude middle and upper tropo-
sphere, which suggests that the tropospheric correlation coef-
ficient maximum in Fig. 4b may be regarded as the signature
of this tropospheric wave guide. To illustrate how the upper
troposphere and lower stratosphere act as a low-pass filter for
planetary wave activity from below, we show the refractive
index field for s=3 in Fig. 5b. A mid-latitude vertical layer
with negative values in the lower stratosphere emerges, of
which the vertical extent increases with increasing wavenum-
ber (not shown). For wavenumber 2 (Fig. 4c), a connection
with the (lower) troposphere is found that is similar to that
of wavenumber 1. A marked difference between Figs. 4c
and b is, that the area of maximum correlation coefficients
in the troposphere is found at higher latitudes (50–70◦ N) in
Fig. 4c. (The distinct and very high maximum ofr=0.82 at
1000 hPa may not be very meaningful due to the extrapola-
tion below ground.) This correlation coefficient maximum
cannot be linked to an s=2 waveguide, since the refractive in-
dex field in this region is highly variable due to the presence
of a zero-wind critical line, which is not sensitive to the zonal
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Fig. 4. Correlation coefficient of(a) H100, (b) (c) the s=1,2 component ofH100, (d) the stationary component ofH100, (e) (f) the stationary
s = 1,2 component ofH100 (g) the transient component ofH100, (h), (i) the transient s=1,2 component ofH100; with the same latitude-
and pressure-dependent wave component of the zonal-mean eddy heat flux averaged over January–February. Correlation coefficients are
calculated over 1979–2002, and only the areas with>95% confidence levels are shown.

wave number of the refractive index. For wavenumber 2, the
latitude of maximum correlation coefficients shifts equator-
ward with height above 100 hPa. For the wave-3 contribution
to the heat flux, the link with the troposphere is absent and the
area with significant correlation coefficients is much more
confined (not shown). A further decomposition into station-
ary and transient wave components (Figs. 4d–i) reveals that
the link with the (lower) troposphere is only statistically sig-
nificant for the stationary part of the wave-1 and wave-2 con-
tributions. The tropospheric meridional dipole structure in
the stationary wave-1 correlation coefficient map (Fig. 4e)
implies that the stationary wave-1 component ofH100 is sen-
sitive to the latitude of the tropospheric wave-1 source. If
the source is located too far south, less wave activity is able
to enter the mid-latitude waveguide and contribute toH100.
Such a dipole structure is not found in Fig. 4f for s=2.

3.5 An alternative analysis of the interannual variability of
H100

In Sect. 2.3, we mentioned an alternative way of decom-
posingH100, by noting that[v∗T ∗

] equals the product of
rv,T with σv and σT (Eq. 4). Subsequently, we assumed
in Eq. (5) thatH100 can be approximated bỹH100. To ex-
amine the accuracy of this approximation, we first compare
the 24-year averages of both̃H100 and H100. This yields
14.1±0.4 K m s−1 and 15.1± 0.5 K m s−1, respectively with
a mean ratio of 0.94±0.02. To see ifH̃100 and H100 also
have comparable interannual variability, we performed a lin-
ear regression ofH100 with H̃100. The regression yields a
high correlation coefficient (r=0.85) and a regression coeffi-
cientb=0.71±0.09. We conclude that̃H100 is indeed a useful
approximation ofH100. We next linearize the deviation of
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Fig. 5. Refractive index square a2n2
s in m2, based on the 1979–2002 average of the zonal-mean zonal wind during January–February, for(a)

s=1, and(b) s=3. Except for the 150 and 300 m2 contours, contours are from –100 to +100 m2, with an interval of 10 m2. Negative values
are indicated by dark shading, positive values below 20 m2 by light shading. The 0, 20, 40, and 150 m2 contours have been labeled, and the
location of the s=1 correlation coefficient maximum is roughly denoted by the dashed line in (a).

Table 2. Linear regression ofH100 with σm
v σm

T
1rv,T , σm

T
rm
v,T

1σv , andσm
v rm

v,T
1σT at 100 hPa. The linear regression is performed over

1979–2002. The 1979–2002 averages and standard deviations are for<rv,T >, <σv>, and<σT >, respectively.

Regression coefficient Corr. coeffient 1979–2002 average 1979–2002 stdev

σm
v σm

T
1rv,T 0.40±0.20 0.39 rm

v,T
=0.23 0.04

σm
T

rm
v,T

1σv 0.07±0.09 0.17 σm
v =10.4 m s−1 0.8 m s−1

σm
v rm

v,T
1σT 0.23±0.14 0.34 σm

T
=5.9 K 0.7 K

H̃100 from its 1979–2002 mean as1Ĥ100 (Eq.6). The error
1Ê100 that arises from the linearization in Eq. (6) is remark-
ably small: a linear regression of1H̃100 with 1Ĥ100 yields
b = 0.98±0.03 andr=0.99. The difference between1H100
and1Ĥ100 in Eq. (7) thus primarily results from1Ẽ100. We
can use Eq. (7) to analyze the sensitivity ofH100 to the year-
to-year variations in the effective phase difference<rv,T >,
as well as to the interannual variability of the effective am-
plitudes<σv> and<σT >. The regression and correlation
coefficients of the linear regression analysis ofH100 with the
first three terms on the r.h.s. of Eq. (7) at 100 hPa are given
in Table 2. The results show that the interannual variabil-
ity of H100 is more sensitive to the<rv,T > than to<σv>

and<σT >. Therefore, a significant part of the year-to-year
variability in H100 is not determined by variability in the am-
plitude of the waves but by variability in the efficiency of the

poleward heat transport, as represented by<rv,T >. We also
note that the variability in<σT > affectsH100 more strongly
than the variability in<σv>.

4 Summary and discussion

We have studied the interannual variability of the strato-
spheric wave driving during NH winter, as quantified by
H100, being the January–February mean of the 40◦–80◦ N
average of the total poleward heat flux at 100 hPa. For our
analysis, we used 24 years (1979–2002) of ERA-40 reanal-
ysis data from ECMWF. The results can be summarized as
follows. We have examined the sensitivity ofH100 to sev-
eral factors. The first factor is the strength of the total
tropospheric wave source. It was found thatH100 is not
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significantly correlated with the total upward wave activ-
ity flux below 200 hPa. However, both the individual zonal
wave-1 and wave-2 components exhibit significant vertical
coupling between 100 hPa and lower (as well as higher) lev-
els. About 85% of the interannual variability ofH100 can
be attributed to its s=1,2 components. However, the inter-
annual variability ofH100 cannot be attributed to either of
these individual wave components of the heat flux in the tro-
posphere. Presumably, this is in part due to the statistically
significant negative correlation coefficient that we found be-
tween the s=1 and s=2 components ofH100. This negative
correlation coefficient is also observed on an intraseasonal
timescale, in association with the leading mode of variabil-
ity in the NH winter geopotential field, the Northern An-
nular Mode (NAM) (Hartmann et al., 2000). During high
NAM index periods, with a stronger stratospheric polar vor-
tex, the anomalous s=1 component of the heat flux at 100 hPa
was negative, and the anomalous s=2 component was posi-
tive. During low NAM index periods, both anomalies were
of opposite sign. Thus, the negative correlation coefficient
we found on the interannual timescale is also observed on
the shorter timescales. The wave-1 contribution toH100 was
found to depend on the latitude of the wave-1 source. Partic-
ularly, if the tropospheric stationary wave-1 source is located
near 30◦ N instead of near 50◦ N, significantly less wave ac-
tivity is able to enter the mid-latitude waveguide and con-
tribute toH100.

Finally, another approach was followed, where the wave
driving anomalies were separated into three parts: one part
due to anomalies in the zonal correlation coefficient between
the eddy temperature and eddy meridional wind, another part
due to anomalies in the zonal eddy temperature amplitude,
and a third part due to anomalies in the zonal eddy meridional
wind amplitude. It was found that year-to-year variability in
the zonal correlation coefficient between the eddy tempera-
ture and the eddy meridional wind is the most dominant of
the three factors.

In the interpretation of our results, the assumption has
been that wave activity always propagates upward, so that
the source of the wave activity at 100 hPa is situated below
100 hPa. For stationary waves, this is a reasonable assump-
tion. However, transient waves can develop in the strato-
sphere as a result of purely stationary waves of sufficient am-
plitude emanating from the troposphere, as demonstrated by
Christiansen (1999). Downward propagation of these strato-
spheric transients might affectH100. However, we expect this
to be only a minor influence, since the interannual variabil-
ity of H100 is dominated by stationary waves (Table 1), and
transient wave activity is abundantly generated in the tropo-
sphere.

In the present study, the 1958–1978 period was omitted
from the analysis. However, we have also analyzed the en-
tire 1958–2002 period. The results were very similar, al-
though the statistical significance was generally larger due to
the longer period. As a result, Fig. 3a exhibited a significant

correlation coefficient for s=1 in the entire free troposphere.
A remarkable difference with the 1979–2002 analysis was
found for Fig. 3b, in which the level of maximum and signif-
icant correlation coefficient withH100 was found to increase
with increasing wavenumber s=1–5. The s=1 correlation co-
efficient decreased to statistically insignificant values of less
than 0.3 in the upper stratosphere. In Fig. 4a, a clear equa-
torward displacement of a statistically significant correlation
coefficient maximum was observed above 100 hPa, and in
Fig. 4e, the tropospheric dipole structure for s=1 in Fig. 4e
was more pronounced. Finally, for the 1958–2002 period,
a significantly higher refractive index was observed in the
mid-latitude stratosphere for a composite with positiveH100
anomalies exceeding one standard deviation than for a com-
posite of negativeH100 anomalies exceeding one standard
deviation. Such a significant signal could not be obtained for
the 1979–2002 period, likely due to the smaller sample size.

One could argue that the results depend on the 40◦–80◦N
latitude window that is applied. However, replacingH100
with the NH average of[v∗T ∗] at 100 hPa yields almost iden-
tical results. The present study has focused on the interannual
variability of the stratospheric wave driving. We note that the
factors that dominate the interannual variability may be dif-
ferent from the factors that dominate the trend. These issues
will be subject of our further investigation.
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