Atmos. Chem. Phys., 6, 2147-2160, 2006
www.atmos-chem-phys.net/6/2147/2006/
doi:10.5194/acp-6-2147-2006
© Author(s) 2006. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Effect of humidity on nitric acid uptake to mineral dust aerosol particles
A. Vlasenko1,3, S. Sjogren2, E. Weingartner2, K. Stemmler1, H. W. Gäggeler1,3, and M. Ammann1
1Laboratory of Radio- and Environmental chemistry, Paul Scherrer Institute, Villigen, Switzerland
2Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
3Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland

Abstract. This study presents the first laboratory observation of HNO3 uptake by airborne mineral dust particles. The model aerosols were generated by dry dispersion of Arizona Test Dust (ATD), SiO2, and by nebulizing a saturated solution of calcium carbonate. The uptake of 13N-labeled gaseous nitric acid was observed in a flow reactor on the 0.2–2 s reaction time scale at room temperature and atmospheric pressure. The amount of nitric acid appearing in the aerosol phase at the end of the flow tube was found to be a linear function of the aerosol surface area. SiO2 particles did not show any significant uptake, while the CaCO3 aerosol was found to be more reactive than ATD. Due to the smaller uncertainty associated with the reactive surface area in the case of suspended particles as compared to bulk powder samples, we believe that we provide an improved estimate of the rate of uptake of HNO3 to mineral dust. The fact that the rate of uptake was smaller at a concentration of 1012 than at 1011 was indicative of a complex uptake mechanism. The uptake coefficient averaged over the first 2 s of reaction time at a concentration of 1012 molecules cm-3 was found to increase with increasing relative humidity, from 0.022±0.007 at 12% RH to 0.113±0.017 at 73% RH , which was attributed to an increasing degree of solvation of the more basic minerals. The extended processing of the dust by higher concentrations of HNO3 at 85% RH led to a water soluble coating on the particles and enhanced their hygroscopicity.

Citation: Vlasenko, A., Sjogren, S., Weingartner, E., Stemmler, K., Gäggeler, H. W., and Ammann, M.: Effect of humidity on nitric acid uptake to mineral dust aerosol particles, Atmos. Chem. Phys., 6, 2147-2160, doi:10.5194/acp-6-2147-2006, 2006.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share