Volume 5, issue 3

Volume 5, issue 3

25 Feb 2005
Measurements of total odd nitrogen (NOy) aboard MOZAIC in-service aircraft: instrument design, operation and performance
A. Volz-Thomas, M. Berg, T. Heil, N. Houben, A. Lerner, W. Petrick, D. Raak, and H.-W. Pätz
Atmos. Chem. Phys., 5, 583–595, https://doi.org/10.5194/acp-5-583-2005,https://doi.org/10.5194/acp-5-583-2005, 2005
28 Feb 2005
2002-2003 Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model
C. S. Singleton, C. E. Randall, M. P. Chipperfield, S. Davies, W. Feng, R. M. Bevilacqua, K. W. Hoppel, M. D. Fromm, G. L. Manney, and V. L. Harvey
Atmos. Chem. Phys., 5, 597–609, https://doi.org/10.5194/acp-5-597-2005,https://doi.org/10.5194/acp-5-597-2005, 2005
01 Mar 2005
Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II
W. H. Swartz, J.-H. Yee, R. E. Shetter, S. R. Hall, B. L. Lefer, J. M. Livingston, P. B. Russell, E. V. Browell, and M. A. Avery
Atmos. Chem. Phys., 5, 611–622, https://doi.org/10.5194/acp-5-611-2005,https://doi.org/10.5194/acp-5-611-2005, 2005
01 Mar 2005
Evaluation of detailed aromatic mechanisms (MCMv3 and MCMv3.1) against environmental chamber data
C. Bloss, V. Wagner, A. Bonzanini, M. E. Jenkin, K. Wirtz, M. Martin-Reviejo, and M. J. Pilling
Atmos. Chem. Phys., 5, 623–639, https://doi.org/10.5194/acp-5-623-2005,https://doi.org/10.5194/acp-5-623-2005, 2005
01 Mar 2005
Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons
C. Bloss, V. Wagner, M. E. Jenkin, R. Volkamer, W. J. Bloss, J. D. Lee, D. E. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J. C. Wenger, and M. J. Pilling
Atmos. Chem. Phys., 5, 641–664, https://doi.org/10.5194/acp-5-641-2005,https://doi.org/10.5194/acp-5-641-2005, 2005
02 Mar 2005
Early unusual ozone loss during the Arctic winter 2002/2003 compared to other winters
F. Goutail, J.-P. Pommereau, F. Lefèvre, M. van Roozendael, S. B. Andersen, B.-A. Kåstad Høiskar, V. Dorokhov, E. Kyrö, M. P. Chipperfield, and W. Feng
Atmos. Chem. Phys., 5, 665–677, https://doi.org/10.5194/acp-5-665-2005,https://doi.org/10.5194/acp-5-665-2005, 2005
02 Mar 2005
Polar stratospheric cloud observations by MIPAS on ENVISAT: detection method, validation and analysis of the northern hemisphere winter 2002/2003
R. Spang, J. J. Remedios, L. J. Kramer, L. R. Poole, M. D. Fromm, M. Müller, G. Baumgarten, and P. Konopka
Atmos. Chem. Phys., 5, 679–692, https://doi.org/10.5194/acp-5-679-2005,https://doi.org/10.5194/acp-5-679-2005, 2005
02 Mar 2005
A re-evaluation of the ClO/Cl2O2 equilibrium constant based on stratospheric in-situ observations
M. von Hobe, J.-U. Grooß, R. Müller, S. Hrechanyy, U. Winkler, and F. Stroh
Atmos. Chem. Phys., 5, 693–702, https://doi.org/10.5194/acp-5-693-2005,https://doi.org/10.5194/acp-5-693-2005, 2005
03 Mar 2005
The role of organic aerosols in homogeneous ice formation
B. Kärcher and T. Koop
Atmos. Chem. Phys., 5, 703–714, https://doi.org/10.5194/acp-5-703-2005,https://doi.org/10.5194/acp-5-703-2005, 2005
03 Mar 2005
Global indirect aerosol effects: a review
U. Lohmann and J. Feichter
Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005,https://doi.org/10.5194/acp-5-715-2005, 2005
07 Mar 2005
Influence of mountain waves and NAT nucleation mechanisms on polar stratospheric cloud formation at local and synoptic scales during the 1999-2000 Arctic winter
S. H. Svendsen, N. Larsen, B. Knudsen, S. D. Eckermann, and E. V. Browell
Atmos. Chem. Phys., 5, 739–753, https://doi.org/10.5194/acp-5-739-2005,https://doi.org/10.5194/acp-5-739-2005, 2005
07 Mar 2005
On the importance of cumulus penetration on the microphysical and optical properties of stratocumulus clouds
S. Ghosh, S. Osborne, and M. H. Smith
Atmos. Chem. Phys., 5, 755–765, https://doi.org/10.5194/acp-5-755-2005,https://doi.org/10.5194/acp-5-755-2005, 2005
10 Mar 2005
Effects of SO2 oxidation on ambient aerosol growth in water and ethanol vapours
T. Petäjä, V.-M. Kerminen, K. Hämeri, P. Vaattovaara, J. Joutsensaari, W. Junkermann, A. Laaksonen, and M. Kulmala
Atmos. Chem. Phys., 5, 767–779, https://doi.org/10.5194/acp-5-767-2005,https://doi.org/10.5194/acp-5-767-2005, 2005
10 Mar 2005
Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods
A. H. Falkovich, E. R. Graber, G. Schkolnik, Y. Rudich, W. Maenhaut, and P. Artaxo
Atmos. Chem. Phys., 5, 781–797, https://doi.org/10.5194/acp-5-781-2005,https://doi.org/10.5194/acp-5-781-2005, 2005
14 Mar 2005
A review of biomass burning emissions part II: intensive physical properties of biomass burning particles
J. S. Reid, R. Koppmann, T. F. Eck, and D. P. Eleuterio
Atmos. Chem. Phys., 5, 799–825, https://doi.org/10.5194/acp-5-799-2005,https://doi.org/10.5194/acp-5-799-2005, 2005
14 Mar 2005
A review of biomass burning emissions part III: intensive optical properties of biomass burning particles
J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang
Atmos. Chem. Phys., 5, 827–849, https://doi.org/10.5194/acp-5-827-2005,https://doi.org/10.5194/acp-5-827-2005, 2005
14 Mar 2005
Ice supersaturations exceeding 100% at the cold tropical tropopause: implications for cirrus formation and dehydration
E. J. Jensen, J. B. Smith, L. Pfister, J. V. Pittman, E. M. Weinstock, D. S. Sayres, R. L. Herman, R. F. Troy, K. Rosenlof, T. L. Thompson, A. M. Fridlind, P. K. Hudson, D. J. Cziczo, A. J. Heymsfield, C. Schmitt, and J. C. Wilson
Atmos. Chem. Phys., 5, 851–862, https://doi.org/10.5194/acp-5-851-2005,https://doi.org/10.5194/acp-5-851-2005, 2005
CC BY 4.0