Atmos. Chem. Phys., 5, 3357-3375, 2005
www.atmos-chem-phys.net/5/3357/2005/
doi:10.5194/acp-5-3357-2005
© Author(s) 2005. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Reactive and organic halogen species in three different European coastal environments
C. Peters1, S. Pechtl1, J. Stutz3, K. Hebestreit1, G. Hönninger1, K. G. Heumann2, A. Schwarz2, J. Winterlik2, and U. Platt1
1Institute for Environmental Physics, University of Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
2Institute for Inorganic and Analytical Chemistry, University of Mainz, Düsbergweg 10–14, 55099 Mainz, Germany
3Dept. of Atmospheric and Oceanic Sciences, UCLA, 7127 Math Sciences Los Angeles, CA 90095–1565, USA

Abstract. We present results of three field campaigns using active longpath DOAS (Differential Optical Absorption Spectroscopy) for the study of reactive halogen species (RHS) BrO, IO, OIO and I2. Two recent field campaigns took place in Spring 2002 in Dagebüll at the German North Sea Coast and in Spring 2003 in Lilia at the French Atlantic Coast of Brittany. In addition, data from a campaign in Mace Head, Ireland in 1998 was partly re-evaluated. During the recent field campaigns volatile halogenated organic compounds (VHOCs) were determined by a capillary gas chromatograph coupled with an electron capture detector and an inductively coupled plasma mass spectrometer (GC/ECD-ICPMS) in air and water. Due to the inhomogeneous distribution of macroalgae at the German North Sea Coast we found a clear connection between elevated levels of VHOCs and the appearance of macroalgae. Extraordinarily high concentrations of several VHOCs, especially CH3I and CH3Br of up to 1830 pptv and 875 pptv, respectively, were observed at the coast of Brittany, demonstrating the outstanding level of bioactivity there. We found CH2I2 at levels of up to 20 pptv, and a clear anti-correlation with the appearance of IO. The IO mixing ratio reached up to 7.7±0.5 ppt(pmol/mol) during the day, in reasonable agreement with model studies designed to represent the meteorological and chemical conditions in Brittany. For the two recent campaigns the DOAS spectra were evaluated for BrO, OIO and I2, but none of these species could be clearly identified (average detection limits around 2 ppt, 3 ppt, 20 ppt, resp., significantly higher in individual cases). Only in the Mace Head spectra evidence was found for the presence of OIO. Since macroalgae under oxidative stress are suggested to be a further source for I2 in the marine boundary layer, we re-analyzed spectra in the 500–600 nm range taken during the 1998 PARFORCE campaign in Mace Head, Ireland, which had not previously been analyzed for I2. We identified molecular iodine above the detection limit (~20 ppt), with peak mixing ratios of 61±12 ppt. Since I2 was undetectable during the Brittany campaign, we suggest that iodine may not be released into the atmosphere by macroalgae in general, but only by a special type of the laminaria species under oxidative stress. Only during periods of extraordinarily low water (spring-tide), the plant is exposed to ambient air and may release gaseous iodine in some way to the atmosphere. The results of our re-analysis of spectra from the PARFORCE campaign in 1998 support this theory. Hence, we feel that we can provide an explanation for the different I2 levels in Brittany and Mace Head.

Citation: Peters, C., Pechtl, S., Stutz, J., Hebestreit, K., Hönninger, G., Heumann, K. G., Schwarz, A., Winterlik, J., and Platt, U.: Reactive and organic halogen species in three different European coastal environments, Atmos. Chem. Phys., 5, 3357-3375, doi:10.5194/acp-5-3357-2005, 2005.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share