Atmos. Chem. Phys., 5, 131-138, 2005
www.atmos-chem-phys.net/5/131/2005/
doi:10.5194/acp-5-131-2005
© Author(s) 2005. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
Vortex-averaged Arctic ozone depletion in the winter 2002/2003
T. Christensen1, B. M. Knudsen1, M. Streibel2, S. B. Andersen1, A. Benesova3, G. Braathen4, H. Claude5, J. Davies6, H. De Backer7, H. Dier8, V. Dorokhov9, M. Gerding10, M. Gil11, B. Henchoz12, H. Kelder13, R. Kivi14, E. Kyrö14, Z. Litynska15, D. Moore16, G. Peters8, P. Skrivankova3, R. Stübi12, T. Turunen14, G. Vaughan17, P. Viatte12, A. F. Vik4, P. von der Gathen2, and I. Zaitcev9
1Danish Meteorological Institute, Copenhagen, Denmark
2Alfred Wegener Institute for Polar and Marine Research,Potsdam, Germany
3Czech Hydrometeorological Institute, Prague, Czech Republic
4Norwegian Institute for Air Research, Kjeller, Norway
5Deutscher Wetterdienst, Hohenpeißenberg, Germany
6Environment Canada, Downsview, Ontario, Canadany
7Royal Meteorological Institute, Brussels, Belgium
8Deutscher Wetterdienst, Lindenberg, Germany
9Central Aerological Observatory, Dolgoprudny, Moscow Region, Russia
10Leibniz-Institue of Atmospheric Physics, Kühlungsborn, Germany
11Instituto Nacional de Téchnica Aerospacial, Madrid, Spain
12MeteoSwiss, Payerne, Switzerland
13Royal Netherlands Meteorological Institute, De Bilt, Netherlands
14Finnish Meteorological Institute, Sodankylä, Finland
15IMWM, Centre of Aerology, Legionowo, Poland
16UK Met Office, Exeter, UK
17University of Wales, Aberystwyth, UK

Abstract. A total ozone depletion of 68±7 Dobson units between 380 and 525K from 10 December 2002 to 10 March 2003 is derived from ozone sonde data by the vortex-average method, taking into account both diabatic descent of the air masses and transport of air into the vortex. When the vortex is divided into three equal-area regions, the results are 85±9DU for the collar region (closest to the edge), 52±5DU for the vortex centre and 68±7DU for the middle region in between centre and collar.

Our results compare well with other studies: We find good agreement with ozone loss deduced from SAOZ data, with results inferred from POAM III observations and with results from tracer-tracer correlations using HF as the long-lived tracer. We find a higher ozone loss than that deduced by tracer-tracer correlations using CH4.

We have made a careful comparison with Match results: The results were recalculated using a common time period, vortex edge definition and height interval. The two methods generally compare very well, except at the 475K level which exhibits an unexplained discrepancy.

Citation: Christensen, T., Knudsen, B. M., Streibel, M., Andersen, S. B., Benesova, A., Braathen, G., Claude, H., Davies, J., De Backer, H., Dier, H., Dorokhov, V., Gerding, M., Gil, M., Henchoz, B., Kelder, H., Kivi, R., Kyrö, E., Litynska, Z., Moore, D., Peters, G., Skrivankova, P., Stübi, R., Turunen, T., Vaughan, G., Viatte, P., Vik, A. F., von der Gathen, P., and Zaitcev, I.: Vortex-averaged Arctic ozone depletion in the winter 2002/2003, Atmos. Chem. Phys., 5, 131-138, doi:10.5194/acp-5-131-2005, 2005.

 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share