Atmos. Chem. Phys., 3, 1131-1145, 2003
www.atmos-chem-phys.net/3/1131/2003/
doi:10.5194/acp-3-1131-2003
© Author(s) 2003. This work is licensed under the
Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.
The rate of water vapor evaporation from ice substrates in the presence of HCl and HBr: implications for the lifetime of atmospheric ice particles
C. Delval, B. Fluckiger, and M. J. Rossi
Laboratory of Air and Soil Pollution Studies (LPAS), Swiss Federal Institute of Technology (EPFL), CH-1015 Lausanne, Switzerland

Abstract. Using a multidiagnostic approach the rate Rev [ molec cm-3 s-1] or flux Jev [ molec cm-2 s-1] of evaporation of H2O and its corresponding rate constant for condensation, kcond [s-1 ], on a 1 µm thick ice film have been studied in the temperature range 190 to 240 K as well as in the presence of small amounts of HCl and HBr that left the vapor pressure of H2O on ice unchanged. The resulting Arrhenius expressions for pure ice are Jev = 1.6 · 10 28 ± 1 · exp  (- 10.3 ± 1.2/ RT)  [ molec cm-2 s-1] , kcond = 1.7 · 10 - 2 ± 1 · exp  (+ 1.6 ± 1.5/ RT ) [s -1], in the presence of a HCl mole fraction in the range 3.2 · 10 - 5 - 6.4 · 10 - 3 : Jev = 6.4 · 10 26 ± 1 · exp  (- 9.7 ± 1.2/ RT)  [ molec cm-2 s-1] , kcond = 2.8 · 10 - 2 ± 1 · exp ( + 1.5 ± 1.6 /RT)  [s -1], and a HBr mole fraction smaller than 6.4 · 10 - 3 : Jev = 7.4 · 10 25 ± 1 · exp ( - 9.1 ± 1.2 /RT)  [ molec cm-2 s-1] , kcond = 7.1 · 10 - 5 ± 1 · exp (+ 2.6 ± 1.5/ RT) [s -1]. The small negative activation energy for H2O condensation on ice points to a precursor mechanism. The corresponding enthalpy of sublimation is DHsubl = Eev - Econd = 11.9 ± 2.7 kcal mol-1 , DHsubl = 11.2 ± 2.8 kcal mol-1, and DHsubl = 11.7 ± 2.8 kcal mol-1 whose values are identical within experimental uncertainty to the accepted literature value of 12.3 kcal mol-1 . Interferometric data at 633 nm and FTIR absorption spectra in transmission support the kinetic results. The data are consistent with a significant lifetime enhancement for HCl- and HBr-contaminated ice particles by a factor of 3–6 and 10–20, respectively, for submonolayer coverages of HX once the fraction of the ice not contaminated by HX has evaporated.

Citation: Delval, C., Fluckiger, B., and Rossi, M. J.: The rate of water vapor evaporation from ice substrates in the presence of HCl and HBr: implications for the lifetime of atmospheric ice particles, Atmos. Chem. Phys., 3, 1131-1145, doi:10.5194/acp-3-1131-2003, 2003.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share