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Supplementary Material

1 Aethalometer measurements during INP sampling

In order to identify any potential contamination, aerosol absorption was simultaneously monitored using a micro aethalometer

(AethLabs, Model AE51) during each flight with Cruiser. The aethalomter’s inlet was approximately 7 cm away from that of

the INP sampler, ensuring that both instruments sampled the same air masses. Measurements from the aethalometer during5

each sampling are provided in Fig. S1. Although considerably noisy, these data do not show any significant large spikes that

indicate particulate contamination.

2 Estimate of errors from anisokinetic sampling

The diameter Ds of the sample inlet nozzle was such that near isokinetic sampling (i.e. the air sample inlet velocity U equals

the air speed U0 of the UAS) was achieved for the average operational air speed U0 of the UAS and the mean aerosol sampling10

rate Q. The three quantities U0, Ds and Q are related by Eq. 1:

Ds = 2

√
Q

πU0
, (1)
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Figure 1. Ambient aerosol absorption during INP sampling onboard the Cruiser. The raw output (black dots) and a rolling average (red line,

based on a modification method of Hagler et al. (2011)) are shown. No indication of contamination by the two stroke engine’s exhaust was

identified.

For the mean operational conditions these parameters are: a) for Cruiser: U0 = 27.8ms-1, Q= 5 lpm, Ds = 1.95mm; and b) for

Skywalker: U0 = 16.7ms-1, Q= 5 lpm, Ds = 2.52mm.
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In the following we estimate sampling errors due to anisokinetic conditions (i.e. U 6=U0). The latter may arise when the

UAS spirals in the wind field and air speed U0 and pump rate Q deviate from conditions a) or b) due to tail wind or head wind.

The range of U0 and Q observed during the campaign is given in Tab. S1. All parameters vary typically by less than 20%.

Our estimate follows the discussion of sampling errors in Hinds (1999), chapter 10. For simplicity’s sake and for the lack of

other measurements, we will use the assumption that the gas streamlines entering the sampling inlet show no misalignment5

whatsoever. For this idealized case the ratio of the aerosol number concentration C at U 6=U0 to C0 at isokinetic conditions is

then given by Belyaev & Levin (1974):

C

C0
= 1+

(
U0

U
− 1

)1− 1

1+
(
2+0.62 U

U0

)
Stk

 , (2)

with the Stokes number Stk being defined by

Stk =
τU0

Ds
, (3)10

and the relaxation time τ being

τ =
ρpd

2CC

18η
. (4)

Here ρp is the particle density (estimated for dust as 2.6 g cm-3), d is the aerosol diameter, Cc is the Cunningham correction

factor and η is the viscosity of the air.

Table 1. Variation of sample flow Q and airspeed U0 during the campaign.

Skywalker Cruiser

Qmean [lpm] 4.91

Qmin [lpm] 4.37

Qmeax [lpm] 5.56

U0, mean [m/s] 17.4 28.1

U0, min [m/s] 14.3 23.4

U0, meax [m/s] 23.5 33.3

Figures S2 and S3 present C/C0 as calculated by Eq. 2 as function of particle size for the mean, maximum and minimum15

Q and U0 occurring during flights of Cruiser and Skywalker at an altitude of 2000m. The maximum error is negligible for

particles below 1 µm, and grows with increasing particle size up to around± 30% for particles of 10 µm in diameter for Cruiser

and up to ± 60% for Skywalker.
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Figure 2. Aerosol number concentration ratio due to anisokinetic sampling effects as a function of particle diameter for Cruiser.

Figure 3. Aerosol number concentration ratio due to anisokinetic sampling effects as a function of particle diameter for Skywalker.

3 Results of the DREAM dust model

The evolution of the dust field over the Mediterranean basin and its adjacent regions during the course of the campaign as

predicted by the DREAM model can be found in the attached file that is listed below.

– Movie: Sm01.wmv

4 Vertical profile of the DREAM model and lidar observations5

The campaign-mean vertical profile of the volume depolarization ratio and DREAM dust mass concentration is now provided

in Fig. S4. On average, a prominent vertical dust profile is visible. Yet, the single data points at the sampling time/altitude show

differences of several magnitudes, which is a similar result to our INP measurements.
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Figure 4. Left: Prominent vertical dust profile, when averaging over the whole campaign. Right: Large spread of single data points during

INP sampling. Orange: DREAM dust mass concentration. Purple: Lidar volume depolarization ratio.

5 Comparison of active site densities

Figure 5. IN active site densities measured in the atmosphere and on mineral dust test aerosols. This study (boxes and diamonds); Boose

et al. (2016) (circles); N12 (triangles and red line); A13 (hexagons and black line); dashed lines: water saturation at stated temperature.
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