Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 16, 9067-9087, 2016
http://www.atmos-chem-phys.net/16/9067/2016/
doi:10.5194/acp-16-9067-2016
© Author(s) 2016. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
25 Jul 2016
Ice nucleating particles in the Saharan Air Layer
Yvonne Boose1, Berko Sierau1, M. Isabel García2,3, Sergio Rodríguez2, Andrés Alastuey4, Claudia Linke5, Martin Schnaiter5, Piotr Kupiszewski6, Zamin A. Kanji1, and Ulrike Lohmann1 1Institute for Atmospheric and Climate Science, ETH Zürich, 8092 Zürich, Switzerland
2Izaña Atmospheric Research Center, AEMET, Santa Cruz de Tenerife, Tenerife, Spain
3Department of Chemistry (T.U. Analytical Chemistry), Faculty of Science, University of La Laguna, Tenerife, Spain
4Institute of Environmental Assessment and Water Research, CSIC, Barcelona, Spain
5Institute for Meteorology and Climate Research, Atmospheric Aerosol Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
6Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland
Abstract. This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration.

The concentration of INPs was found to range between 0.2 std L−1 in the deposition mode and up to 2500 std L−1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43–0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient aerosol. Overall, this suggests that atmospheric aging processes in the SAL can lead to an increase in ice nucleation ability of mineral dust from the Sahara. INP concentrations predicted with two common parameterization schemes, which were derived mostly from atmospheric measurements far away from the Sahara but influenced by Asian and Saharan dust, were found to be higher based on the aerosol load than we observed in the SAL, further suggesting aging effects of INPs in the SAL.


Citation: Boose, Y., Sierau, B., García, M. I., Rodríguez, S., Alastuey, A., Linke, C., Schnaiter, M., Kupiszewski, P., Kanji, Z. A., and Lohmann, U.: Ice nucleating particles in the Saharan Air Layer, Atmos. Chem. Phys., 16, 9067-9087, doi:10.5194/acp-16-9067-2016, 2016.
Publications Copernicus
Download
Short summary
Mineral dust is known to be among the most prevalent ice-nucleating particles (INPs) in the atmosphere, playing a crucial role for ice cloud formation. We present 2 months of ground-based in situ measurements of INP concentrations in the free troposphere close to the largest global dust source, the Sahara. We find that some atmospheric processes such as mixing with biological particles and ammonium increase the dust INP ability. This is important when predicting INPs based on emissions.
Mineral dust is known to be among the most prevalent ice-nucleating particles (INPs) in the...
Share