Articles | Volume 16, issue 21
https://doi.org/10.5194/acp-16-13601-2016
https://doi.org/10.5194/acp-16-13601-2016
Research article
 | 
03 Nov 2016
Research article |  | 03 Nov 2016

Unexpectedly acidic nanoparticles formed in dimethylamine–ammonia–sulfuric-acid nucleation experiments at CLOUD

Michael J. Lawler, Paul M. Winkler, Jaeseok Kim, Lars Ahlm, Jasmin Tröstl, Arnaud P. Praplan, Siegfried Schobesberger, Andreas Kürten, Jasper Kirkby, Federico Bianchi, Jonathan Duplissy, Armin Hansel, Tuija Jokinen, Helmi Keskinen, Katrianne Lehtipalo, Markus Leiminger, Tuukka Petäjä, Matti Rissanen, Linda Rondo, Mario Simon, Mikko Sipilä, Christina Williamson, Daniela Wimmer, Ilona Riipinen, Annele Virtanen, and James N. Smith

Viewed

Total article views: 4,199 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
2,569 1,532 98 4,199 96 125
  • HTML: 2,569
  • PDF: 1,532
  • XML: 98
  • Total: 4,199
  • BibTeX: 96
  • EndNote: 125
Views and downloads (calculated since 24 Jun 2016)
Cumulative views and downloads (calculated since 24 Jun 2016)

Cited

Latest update: 23 Apr 2024
Download
Short summary
We present chemical observations of newly formed particles as small as ~ 10 nm from new particle formation experiments using sulfuric acid, dimethylamine, ammonia, and water vapor as gas phase reactants. The nanoparticles were more acidic than expected based on thermodynamic expectations, particularly at the smallest measured sizes. The results suggest rapid surface conversion of SO2 to sulfate and show a marked composition change between 10 and 15 nm, possibly indicating a phase change.
Altmetrics
Final-revised paper
Preprint