Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 15, 3991-4024, 2015
http://www.atmos-chem-phys.net/15/3991/2015/
doi:10.5194/acp-15-3991-2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
16 Apr 2015
The MACC-II 2007–2008 reanalysis: atmospheric dust evaluation and characterization over northern Africa and the Middle East
E. Cuevas1, C. Camino1, A. Benedetti2, S. Basart3, E. Terradellas4, J. M. Baldasano3,5, J. J. Morcrette2, B. Marticorena6, P. Goloub7, A. Mortier7, A. Berjón1, Y. Hernández1, M. Gil-Ojeda8, and M. Schulz9 1Izaña Atmospheric Research Center, AEMET, Santa Cruz de Tenerife, Spain
2European Centre for Medium-Range Weather Forecasts, ECMWF, Reading, UK
3Earth Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
4SDS-WAS Regional Center, AEMET, Barcelona, Spain
5Environmental Modelling Laboratory, Technical University of Catalonia, Barcelona, Spain
6LISA, UMR7583, CNRS, Universités Paris Est-Paris Diderot, Créteil, France
7Laboratoire d'Optique Atmosphérique, Université Lille 1, Lille, France
8Atmospheric Research and Instrumentation Branch, INTA, Madrid, Spain
9Climate and Air Pollution Section, Norwegian Meteorological Institute, Oslo, Norway
Abstract. In the present work, atmospheric mineral dust from a MACC-II short reanalysis run for 2 years (2007–2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products (from MISR, MODIS and OMI satellite sensors), ground-based AERONET data, in situ PM10 concentrations from AMMA, and extinction vertical profiles from two ground-based lidars and CALIOP satellite-based lidar. The MACC-II aerosol optical depth (AOD) spatial and temporal (seasonal and interannual) variability shows good agreement with those provided by satellite sensors. The capability of the model to reproduce the AOD, Ångström exponent (AE) and dust optical depth (DOD) from daily to seasonal time-scale is quantified over 26 AERONET stations located in eight geographically distinct regions by using statistical parameters. Overall DOD seasonal variation is fairly well simulated by MACC-II in all regions, although the correlation is significantly higher in dust transport regions than in dust source regions. The ability of MACC-II in reproducing dust vertical profiles has been assessed by comparing seasonal averaged extinction vertical profiles simulated by MACC-II under dust conditions with corresponding extinction profiles obtained with lidar instruments at M'Bour and Santa Cruz de Tenerife, and with CALIOP. We find a good agreement in dust layers structures and averaged extinction vertical profiles between MACC-II, the lidars and CALIOP above the marine boundary layer from 1 to 6 km. Surface dust daily mean concentrations from MACC-II reanalysis has been evaluated with daily averaged PM10 at three monitoring stations of the Sahelian Dust Transect. MACC-II correctly reproduces daily to interannual surface dust concentration variability, although it underestimates daily and monthly means all year long, especially in winter and early spring (dry season). MACC-II reproduces well the dust variability recorded along the station transect which reflects the variability in dust emission by different Saharan sources, but fails in reproducing the sporadic and very strong dust events associated to mesoscale convective systems during the wet season.

Citation: Cuevas, E., Camino, C., Benedetti, A., Basart, S., Terradellas, E., Baldasano, J. M., Morcrette, J. J., Marticorena, B., Goloub, P., Mortier, A., Berjón, A., Hernández, Y., Gil-Ojeda, M., and Schulz, M.: The MACC-II 2007–2008 reanalysis: atmospheric dust evaluation and characterization over northern Africa and the Middle East, Atmos. Chem. Phys., 15, 3991-4024, doi:10.5194/acp-15-3991-2015, 2015.
Publications Copernicus
Download
Short summary
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the Middle East using satellite aerosol products, AERONET data, in situ PM10 concentrations, and extinction vertical profiles. The MACC-II AOD spatial and temporal variability shows good agreement with satellite sensors and AERONET. We find a good agreement in averaged extinction vertical profiles between MACC-II and lidars. MACC correctly reproduces daily to interannual PM10.
Atmospheric mineral dust from a MACC-II short reanalysis (2007-2008) has been evaluated over northern Africa and the...
Share