Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 15, 1447-1461, 2015
http://www.atmos-chem-phys.net/15/1447/2015/
doi:10.5194/acp-15-1447-2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
10 Feb 2015
Evaluation of black carbon emission inventories using a Lagrangian dispersion model – a case study over southern India
H. S. Gadhavi1, K. Renuka1, V. Ravi Kiran1, A. Jayaraman1, A. Stohl2, Z. Klimont3, and G. Beig4 1National Atmospheric Research Laboratory, Gadanki, 517 112, India
2Norwegian Institute for Air Research, Instituttveien 18, 2027 Kjeller, Norway
3International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria
4Indian Institute of Tropical Meteorology, Dr. Homi Bhabha Road, Pashan, Pune, 411 004, India
Abstract. We evaluated three emission inventories of black carbon (BC) using Lagrangian particle dispersion model simulations and BC observations from a rural site in southern India (Gadanki; 13.48° N, 79.18° E) from 2008 to 2012. We found that 93 to 95% of the BC load at the observation site originated from emissions in India and the rest from the neighbouring countries and shipping. A substantial fraction (33 to 43%) of the BC was transported from northern India. Wet deposition is found to play a minor role in reducing BC mass at the site because of its proximity to BC sources during rainy season and relatively short rainy season over western and northern parts of India. Seasonally, the highest BC concentration (approx. 3.3 μg m−3) is observed during winter, followed by spring (approx. 2.8 μg m−3). While the model reproduced well the seasonal cycle, the modelled BC concentrations are significantly lower than observed values, especially in spring. The model bias is correlated to fire radiative power – a proxy of open biomass burning activity. Using potential emission sensitivity maps derived using the model, we suggest that underestimation of BC mass in the model during spring is due to the underestimation of BC fluxes over southern India (possibly from open-biomass-burning/forest-fires). The overall performance of the model simulations using three different emission inventories (SAFAR-India, ECLIPSE and RETRO) is similar, with ECLIPSE and SAFAR-India performing marginally better as both have about 30% higher emissions for India than RETRO. The ratio of observed to modelled annual mean BC concentration was estimated as 1.5 for SAFAR, 1.7 for ECLIPSE and 2.4 for RETRO.

Citation: Gadhavi, H. S., Renuka, K., Ravi Kiran, V., Jayaraman, A., Stohl, A., Klimont, Z., and Beig, G.: Evaluation of black carbon emission inventories using a Lagrangian dispersion model – a case study over southern India, Atmos. Chem. Phys., 15, 1447-1461, doi:10.5194/acp-15-1447-2015, 2015.
Publications Copernicus
Download
Short summary
Emission inventories are a key component of simulating past, present and future climate. In this article we have evaluated three black carbon emission inventories for emissions of India using observations made from a strategic location. Annual average simulated black carbon concentration is found to be 35% to 60% lower than observed concentration because of underestimation of emissions of southern India in the inventories.
Emission inventories are a key component of simulating past, present and future climate. In this...
Share