Atmos. Chem. Phys., 14, 7705-7720, 2014
www.atmos-chem-phys.net/14/7705/2014/
doi:10.5194/acp-14-7705-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Evidence for an earlier greenhouse cooling effect in the stratosphere before 1980 over the Northern Hemisphere
C. S. Zerefos1,2, K. Tourpali3, P. Zanis4, K. Eleftheratos5, C. Repapis1,10, A. Goodman6, D. Wuebbles7, I. S. A. Isaksen8, and J. Luterbacher9
1Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
2Navarino Environmental Observatory (N.E.O.), Messinia, Greece
3Laboratory of Atmospheric Physics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
4Department of Meteorology and Climatology, School of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece
5Laboratory of Climatology & Atmospheric Environment, University of Athens, Athens, Greece
6Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
7Department of Atmospheric Sciences, University of Illinois, Urbana, IL, USA
8Department of Geosciences, University of Oslo, Oslo, Norway
9Climatology, Climate Dynamics and Climate Change, Department of Geography, Justus-Liebig University of Giessen, Giessen, Germany
10Mariolopoulos-Kanaginis Foundation for the Environmental Sciences, Athens, Greece

Abstract. This study provides a new look at the observed and calculated long-term temperature changes from the lower troposphere to the lower stratosphere since 1958 over the Northern Hemisphere. The data sets include the NCEP/NCAR reanalysis, the Free University of Berlin (FU-Berlin) and the RICH radiosonde data sets as well as historical simulations with the CESM1-WACCM global model participating in CMIP5. The analysis is mainly based on monthly layer mean temperatures derived from geopotential height thicknesses in order to take advantage of the use of the independent FU-Berlin stratospheric data set of geopotential height data since 1957. This approach was followed to extend the records for the investigation of the stratospheric temperature trends to the earliest possible time. After removing the natural variability with an autoregressive multiple regression model our analysis shows that the period 1958–2011 can be divided into two distinct sub-periods of long-term temperature variability and trends: before and after 1980. By calculating trends for the summer time to reduce interannual variability, the two periods are as follows. From 1958 until 1979, a non-significant trend (0.06 ± 0.06 °C decade−1 for NCEP) and slightly cooling trends (−0.12 ± 0.06 °C decade−1 for RICH) are found in the lower troposphere. The second period from 1980 to the end of the records shows significant warming (0.25 ± 0.05 °C decade−1 for both NCEP and RICH). Above the tropopause a significant cooling trend is clearly seen in the lower stratosphere both in the pre-1980 period (−0.58 ± 0.17 °C decade−1 for NCEP, −0.30 ± 0.16 °C decade−1 for RICH and −0.48 ± 0.20 °C decade−1 for FU-Berlin) and the post-1980 period (−0.79 ± 0.18 °C decade−1 for NCEP, −0.66 ± 0.16 °C decade−1 for RICH and −0.82 ± 0.19 °C decade−1 for FU-Berlin). The cooling in the lower stratosphere persists throughout the year from the tropics up to 60° N. At polar latitudes competing dynamical and radiative processes reduce the statistical significance of these trends. Model results are in line with reanalysis and the observations, indicating a persistent cooling (−0.33 °C decade−1) in the lower stratosphere during summer before and after 1980; a feature that is also seen throughout the year. However, the lower stratosphere CESM1-WACCM modelled trends are generally lower than reanalysis and the observations. The contrasting effects of ozone depletion at polar latitudes in winter/spring and the anticipated strengthening of the Brewer–Dobson circulation from man-made global warming at polar latitudes are discussed. Our results provide additional evidence for an early greenhouse cooling signal in the lower stratosphere before 1980, which appears well in advance relative to the tropospheric greenhouse warming signal. The suitability of early warning signals in the stratosphere relative to the troposphere is supported by the fact that the stratosphere is less sensitive to changes due to cloudiness, humidity and man-made aerosols. Our analysis also indicates that the relative contribution of the lower stratosphere versus the upper troposphere low-frequency variability is important for understanding the added value of the long-term tropopause variability related to human-induced global warming.

Citation: Zerefos, C. S., Tourpali, K., Zanis, P., Eleftheratos, K., Repapis, C., Goodman, A., Wuebbles, D., Isaksen, I. S. A., and Luterbacher, J.: Evidence for an earlier greenhouse cooling effect in the stratosphere before 1980 over the Northern Hemisphere, Atmos. Chem. Phys., 14, 7705-7720, doi:10.5194/acp-14-7705-2014, 2014.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share