Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 14, 7091-7112, 2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
11 Jul 2014
A global 3-D CTM evaluation of black carbon in the Tibetan Plateau
C. He1,2, Q. B. Li1,2, K. N. Liou1,2, J. Zhang3, L. Qi1,2, Y. Mao1,2, M. Gao1,2, Z. Lu4, D. G. Streets4, Q. Zhang5, M. M. Sarin6, and K. Ram7 1Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA
2Joint Institute for Regional Earth System Science and Engineering, University of California, Los Angeles, CA, USA
3Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, China
4Decision and Information Sciences Division, Argonne National Laboratory, Argonne, Illinois, USA
5Center for Earth System Science, Tsinghua University, Beijing, China
6Department of Geosciences, Physical Research Laboratory, Ahmedabad, India
7Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
Abstract. We systematically evaluate the black carbon (BC) simulations for 2006 over the Tibetan Plateau by a global 3-D chemical transport model (CTM) (GEOS-Chem) driven by GEOS-5 assimilated meteorological fields, using in situ measurements of BC in surface air, BC in snow, and BC absorption aerosol optical depth (AAOD). Using improved anthropogenic BC emission inventories for Asia that account for rapid technology renewal and energy consumption growth (Zhang et al., 2009; Lu et al., 2011) and improved global biomass burning emission inventories that account for small fires (van der Werf et al., 2010; Randerson et al., 2012), we find that model results of both BC in surface air and in snow are statistically in good agreement with observations (biases < 15%) away from urban centers. Model results capture the seasonal variations of the surface BC concentrations at rural sites in the Indo-Gangetic Plain, but the observed elevated values in winter are absent. Modeled surface-BC concentrations are within a factor of 2 of the observations at remote sites. Part of the discrepancy is explained by the deficiencies of the meteorological fields over the complex Tibetan terrain. We find that BC concentrations in snow computed from modeled BC deposition and GEOS-5 precipitation are spatiotemporally consistent with observations (r = 0.85). The computed BC concentrations in snow are a factor of 2–4 higher than the observations at several Himalayan sites because of excessive BC deposition. The BC concentrations in snow are biased low by a factor of 2 in the central plateau, which we attribute to the absence of snow aging in the CTM and strong local emissions unaccounted for in the emission inventories. Modeled BC AAOD is more than a factor of 2 lower than observations at most sites, particularly to the northwest of the plateau and along the southern slopes of the Himalayas in winter and spring, which is attributable in large part to underestimated emissions and the assumption of external mixing of BC aerosols in the model. We find that assuming a 50% increase of BC absorption associated with internal mixing reduces the bias in modeled BC AAOD by 57% in the Indo-Gangetic Plain and the northeastern plateau and to the northeast of the plateau, and by 16% along the southern slopes of the Himalayas and to the northwest of the plateau. Both surface BC concentration and AAOD are strongly sensitive to anthropogenic emissions (from China and India), while BC concentration in snow is especially responsive to the treatment of BC aerosol aging. We find that a finer model resolution (0.5° × 0.667° nested over Asia) reduces the bias in modeled surface-BC concentration from 15 to 2%. The large range and non-homogeneity of discrepancies between model results and observations of BC across the Tibetan Plateau undoubtedly undermine current assessments of the climatic and hydrological impact of BC in the region and thus warrant imperative needs for more extensive measurements of BC, including its concentration in surface air and snow, AAOD, vertical profile and deposition.

Citation: He, C., Li, Q. B., Liou, K. N., Zhang, J., Qi, L., Mao, Y., Gao, M., Lu, Z., Streets, D. G., Zhang, Q., Sarin, M. M., and Ram, K.: A global 3-D CTM evaluation of black carbon in the Tibetan Plateau, Atmos. Chem. Phys., 14, 7091-7112, doi:10.5194/acp-14-7091-2014, 2014.
Publications Copernicus