Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 14, 4793-4807, 2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
14 May 2014
Processing of biomass-burning aerosol in the eastern Mediterranean during summertime
A. Bougiatioti1,2, I. Stavroulas3, E. Kostenidou4, P. Zarmpas3, C. Theodosi3, G. Kouvarakis3, F. Canonaco5, A. S. H. Prévôt5, A. Nenes1,4,6, S. N. Pandis4,7, and N. Mihalopoulos3,4,8 1School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
2National Technical University of Athens, Laser Remote Sensing Laboratory, Zografou, Greece
3Environmental Chemical Processes Laboratory, University of Crete, 71003 Crete, Greece
4Institute of Chemical Engineering Sciences (ICE-HT), FORTH, Patras, Greece
5Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
6School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
7Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, USA
8Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, Athens, Greece
Abstract. The aerosol chemical composition in air masses affected by wildfires from the Greek islands of Chios, Euboea and Andros, the Dalmatian Coast and Sicily, during late summer of 2012 was characterized at the remote background site of Finokalia, Crete. Air masses were transported several hundreds of kilometers, arriving at the measurement station after approximately half a day of transport, mostly during nighttime. The chemical composition of the particulate matter was studied by different high-temporal-resolution instruments, including an aerosol chemical speciation monitor (ACSM) and a seven-wavelength aethalometer. Despite the large distance from emission and long atmospheric processing, a clear biomass-burning organic aerosol (BBOA) profile containing characteristic markers is derived from BC (black carbon) measurements and positive matrix factorization (PMF) analysis of the ACSM organic mass spectra. The ratio of fresh to aged BBOA decreases with increasing atmospheric processing time and BBOA components appear to be converted to oxygenated organic aerosol (OOA). Given that the smoke was mainly transported overnight, it appears that the processing can take place in the dark. These results show that a significant fraction of the BBOA loses its characteristic AMS (aerosol mass spectrometry) signature and is transformed to OOA in less than a day. This implies that biomass burning can contribute almost half of the organic aerosol mass in the area during periods with significant fire influence.

Citation: Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., Canonaco, F., Prévôt, A. S. H., Nenes, A., Pandis, S. N., and Mihalopoulos, N.: Processing of biomass-burning aerosol in the eastern Mediterranean during summertime, Atmos. Chem. Phys., 14, 4793-4807, doi:10.5194/acp-14-4793-2014, 2014.
Publications Copernicus