Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 14, 11-23, 2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
02 Jan 2014
Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels
A. J. Beyersdorf1, M. T. Timko2,*, L. D. Ziemba1, D. Bulzan3, E. Corporan4, S. C. Herndon2, R. Howard5, R. Miake-Lye2, K. L. Thornhill1,6, E. Winstead1,6, C. Wey3, Z. Yu2, and B. E. Anderson1 1NASA Langley Research Center, Hampton, Virginia, USA
2Aerodyne Research, Inc., Billerica, Massachusetts, USA
3NASA Glenn Research Center, Cleveland, Ohio, USA
4Air Force Research Laboratory, Wright Patterson AFB, Ohio, USA
5Arnold Engineering Development Center, Arnold AFB, Tennessee, USA
6Science Systems and Applications, Inc., Hampton, Virginia, USA
*now at: Worcester Polytechnic Institute, Worcester, Massachusetts, USA
Abstract. The use of alternative fuels for aviation is likely to increase due to concerns over fuel security, price stability, and the sustainability of fuel sources. Concurrent reductions in particulate emissions from these alternative fuels are expected because of changes in fuel composition including reduced sulfur and aromatic content. The NASA Alternative Aviation Fuel Experiment (AAFEX) was conducted in January–February 2009 to investigate the effects of synthetic fuels on gas-phase and particulate emissions. Standard petroleum JP-8 fuel, pure synthetic fuels produced from natural gas and coal feedstocks using the Fischer–Tropsch (FT) process, and 50% blends of both fuels were tested in the CFM-56 engines on a DC-8 aircraft. To examine plume chemistry and particle evolution with time, samples were drawn from inlet probes positioned 1, 30, and 145 m downstream of the aircraft engines. No significant alteration to engine performance was measured when burning the alternative fuels. However, leaks in the aircraft fuel system were detected when operated with the pure FT fuels as a result of the absence of aromatic compounds in the fuel.

Dramatic reductions in soot emissions were measured for both the pure FT fuels (reductions in mass of 86% averaged over all powers) and blended fuels (66%) relative to the JP-8 baseline with the largest reductions at idle conditions. At 7% power, this corresponds to a reduction from 7.6 mg kg−1 for JP-8 to 1.2 mg kg−1 for the natural gas FT fuel. At full power, soot emissions were reduced from 103 to 24 mg kg−1 (JP-8 and natural gas FT, respectively). The alternative fuels also produced smaller soot (e.g., at 85% power, volume mean diameters were reduced from 78 nm for JP-8 to 51 nm for the natural gas FT fuel), which may reduce their ability to act as cloud condensation nuclei (CCN). The reductions in particulate emissions are expected for all alternative fuels with similar reductions in fuel sulfur and aromatic content regardless of the feedstock.

As the plume cools downwind of the engine, nucleation-mode aerosols form. For the pure FT fuels, reductions (94% averaged over all powers) in downwind particle number emissions were similar to those measured at the exhaust plane (84%). However, the blended fuels had less of a reduction (reductions of 30–44%) than initially measured (64%). The likely explanation is that the reduced soot emissions in the blended fuel exhaust plume results in promotion of new particle formation microphysics, rather than coating on pre-existing soot particles, which is dominant in the JP-8 exhaust plume. Downwind particle volume emissions were reduced for both the pure (79 and 86% reductions) and blended FT fuels (36 and 46%) due to the large reductions in soot emissions. In addition, the alternative fuels had reduced particulate sulfate production (near zero for FT fuels) due to decreased fuel sulfur content.

To study the formation of volatile aerosols (defined as any aerosol formed as the plume ages) in more detail, tests were performed at varying ambient temperatures (−4 to 20 °C). At idle, particle number and volume emissions were reduced linearly with increasing ambient temperature, with best fit slopes corresponding to −8 × 1014 particles (kg fuel)−1 °C−1 for particle number emissions and −10 mm3 (kg fuel)−1 °C−1 for particle volume emissions. The temperature dependency of aerosol formation can have large effects on local air quality surrounding airports in cold regions. Aircraft-produced aerosols in these regions will be much larger than levels expected based solely on measurements made directly at the engine exit plane. The majority (90% at idle) of the volatile aerosol mass formed as nucleation-mode aerosols, with a smaller fraction as a soot coating. Conversion efficiencies of up to 2.8% were measured for the partitioning of gas-phase precursors (unburned hydrocarbons and SO2) to form volatile aerosols. Highest conversion efficiencies were measured at 45% power.

Citation: Beyersdorf, A. J., Timko, M. T., Ziemba, L. D., Bulzan, D., Corporan, E., Herndon, S. C., Howard, R., Miake-Lye, R., Thornhill, K. L., Winstead, E., Wey, C., Yu, Z., and Anderson, B. E.: Reductions in aircraft particulate emissions due to the use of Fischer–Tropsch fuels, Atmos. Chem. Phys., 14, 11-23, doi:10.5194/acp-14-11-2014, 2014.
Publications Copernicus