Articles | Volume 13, issue 18
https://doi.org/10.5194/acp-13-9641-2013
https://doi.org/10.5194/acp-13-9641-2013
Research article
 | 
30 Sep 2013
Research article |  | 30 Sep 2013

On the uses of a new linear scheme for stratospheric methane in global models: water source, transport tracer and radiative forcing

B. M. Monge-Sanz, M. P. Chipperfield, A. Untch, J.-J. Morcrette, A. Rap, and A. J. Simmons

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022,https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Indicators of the ozone recovery for selected sites in the Northern Hemisphere mid-latitudes derived from various total column ozone datasets (1980–2020)
Janusz Krzyścin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-680,https://doi.org/10.5194/acp-2022-680, 2022
Revised manuscript accepted for ACP
Short summary
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 1: Stratospheric chlorine budget and the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022,https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022,https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022,https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary

Cited articles

Austin, J., Wilson, J., Li, F., and Vömel, H.: Evolution of Water Vapor Concentrations and Stratospheric age-of-air in Coupled Chemistry-Climate Model Simulations, J. Atmos. Sci., 64, 905–921, https://doi.org/10.1175/JAS3866.1, 2007.
Bates, D. R. and Nicolet, M.: The photochemistry of water vapour, J. Geophys. Res., 55, 301–327, 1950.
Bechtold, P., Orr, A., Morcrette, J.-J., Engelen, R., Flemming, J., and Janiskova, M.: Improvements in the stratosphere and mesosphere of the IFS, ECMWF Newsletter, 2009.
Brasseur, G. and Solomon, S.: Aeronomy of the Middle Atmosphere, Springer, Dordrecht, the Netherlands, 2005.
Bregman, B., Meijer, E., and Scheele, R.: Key aspects of stratospheric tracer modeling using assimilated winds, Atmos. Chem. Phys., 6, 4529–4543, https://doi.org/10.5194/acp-6-4529-2006, 2006.
Download
Altmetrics
Final-revised paper
Preprint