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Abstract. This study examines the hygroscopicity of newly
formed particles (diameters range 25–45 nm) during two
atmospheric new particle formation (NPF) events in the
German mid-level mountains during the Hill Cap Cloud
Thuringia 2010 (HCCT-2010) field experiment. At the end
of the NPF event involving clear particle growth, we mea-
sured an unusually high soluble particle fraction of 58.5 %
at 45 nm particle size. The particle growth rate contributed
through sulfuric acid condensation only accounts for around
6.5 % of the observed growth rate. Estimations showed that
sulfuric acid condensation explained, however, only around
10 % of that soluble particle fraction. Therefore, the forma-
tion of additional water-soluble matter appears imperative
to explain the missing soluble fraction. Although direct evi-
dence is missing, we consider water-soluble organics as can-
didates for this mechanism. For the case with clear growth
process, the particle growth rate was determined by two al-
ternative methods based on tracking the mode diameter of
the nucleation mode. The mean particle growth rate obtained
from the inter-site data comparison using Lagrangian con-
sideration is 3.8 (± 2.6) nm h−1. During the same period, the
growth rate calculated based on one site data is 5.0 nm h−1

using log-normal distribution function method. In light of
the fact that considerable uncertainties could be involved in
both methods, we consider both estimated growth rates con-
sistent.

1 Introduction

New particle formation (NPF) has been observed in almost
any part of the earth’s atmosphere (Kulmala et al., 2004).
NPF is an important source of atmospheric particles and
likely contributes to the balance of optically active parti-
cles (Kulmala et al., 2011), and cloud condensation nuclei
(Spracklen et al., 2008; Wiedensohler et al., 2009; Wang and
Penner, 2009; Laaksonen et al., 2005; Yue et al., 2011). NPF
has thus the potential to influence climatologically important
processes such as precipitation patterns and earth’s energy
balance (IPCC, 2007). However, the mechanisms of atmo-
spheric nucleation and particle subsequent growth still re-
main unclear. Sulfuric acid is the main species thought to be
responsible for atmospheric NPF (Brus et al., 2011; Kulmala
et al., 2006; Sipil̈a et al., 2010). Recently, sufficient evidences
showed that organics also play important roles (e.g., Zhang
et al., 2004; Kiendler-Scharr et al., 2009; Wang et al., 2010;
Ristovski et al., 2010).

To quantitatively understand the NPF and subsequent
growth process, it is critical to obtain information on the
chemical species involved. Recently, novelty instruments,
such as thermal desorption chemical ionization mass spec-
trometry, were developed and used to measure the parti-
cle chemical composition of sub-20 nm (Smith et al., 2004,
2005; Barsanti et al., 2009; Smith et al., 2010; Zordan et al.,
2008). Due to the tiny particle masses involved, the direct de-
termination of chemical composition of newly formed par-
ticles is still a tedious task. Alternatively, measurements of
particle volatility and/or hygroscopicity have been referred
to provide indirect information on the chemical species
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contributing to particle growth (V̈akev̈a et al., 2002; Saku-
rai et al., 2005; Wehner et al., 2005; Ehn et al., 2007; Petäjä
et al., 2007; Asmi et al., 2010; Ristovski et al., 2010; Modini
et al., 2009).

Both sulfuric acid and organic compounds were found
to contribute to the subsequent particle growth after nucle-
ation (e.g., Smith et al., 2004; Yue et al., 2010; Pierce et al.,
2011; Ehn et al., 2007). Their relative fraction in the particle
phase seems to depend on the type of atmospheric environ-
ment (e.g., Boy et al., 2005; Yue et al., 2010; Stolzenburg
et al., 2005). In the polluted atmosphere of Atlanta, USA,
the available amount of sulfuric acid was sufficient to ex-
plain all of the observed particle growth (Stolzenburg et al.,
2005), however, sulfuric acid represents only 30 % of the
newly formed particles in the rural atmosphere of Hohen-
peissenberg, Southern Germany (Birmili et al., 2003), and
only around 10 % in the boreal forest area of Finland (Boy et
al., 2005).

Due to the differences in hygroscopicity of sulfuric acid
and/or its ammonium salts and secondary organics (Virkkula
et al., 1999; Varutbangkul et al., 2006; Tang and Munkel-
witz, 1994), the hygroscopicity measurements can provide
insight into the changes in condensing vapor properties and
chemical composition of newly formed particles during the
course of NPF event (Ḧameri et al., 2001; Ehn et al., 2007;
Ristovski et al., 2010). In Hyytiälä, Finland, the hygroscop-
icity of the mode of newly formed particles decreased as
the modal diameter increased from 10 to 50 nm during the
NPF events, indicating that the vapors responsible for par-
ticle growth changed (Ehn et al., 2007). They also observed
that the hygroscopicity of 10 nm particles significantly varied
with different events and stressed that the mechanism pro-
ducing these particles is different.

In this study, the particle number size distributions and
particle hygroscopicity at a mid-level mountain site in Ger-
many were measured during the field experiment Hill Cap
Cloud Thuringia 2010 (HCCT-2010). Two NPF events with
different features could be characterized in much detail.
Based on the hygroscopicity measurements of the nucleation
mode and additional numerical calculations, the possibili-
ties of various chemical species contributing to the detected
growth of the nucleation mode are evaluated. Finally, the
particle growth rate was respectively determined using log-
normal distribution function method and Langragian consid-
eration.

2 Experiments

2.1 Measurement sites

The HCCT-2010 field campaign was performed in Septem-
ber and October 2010 in the Thüringer Wald mid-level
Mountain in central Germany. During the campaign, three
research stations were employed: Schmücke (10◦46′15′′ E,

50◦39′19′′ N, the summit of the mountain, 937 m above sea
level, a.s.l.), Goldlauter (10◦45′20′′ E, 50◦38′25′′ N, 605 m
a.s.l.), and Gehlberg (10◦47′32′′ E, 50◦ 40′21′′ N, 732 m
a.s.l.). The research stations are surrounded by forest. The
dominant trees are Norway spruces (8–23 m). A more de-
tailed description about the sampling sites can be found in
Herrmann et al. (2005).

2.2 Particle hygroscopicity measurements

The particle hygroscopicity was investigated using a hy-
groscopicity tandem differential mobility particle analyzer
(HTDMA). The HTDMA used in this study has been illus-
trated in previous publications in detailed (Wu et al., 2011;
Massling et al., 2003), and complies to the instrumental stan-
dards prescribed in Massling et al. (2011). The H-TDMA
consists of three main parts: (1) Differential Mobility Ana-
lyzer (DMA1) that selects quasi-monodisperse particles, and
a Condensation Particle Counter (CPC1) that measures the
particle number concentration leaving the DMA1 at the se-
lected particle size; (2) an aerosol humidifier conditioning
the particles selected by DMA1 to a defined relative humid-
ity (RH); and (3) the second DMA (DMA2) coupled with
another condensation particle counter (CPC2) to measure the
number size distributions of the humidified aerosol. The ex-
periments were conducted in a temperature-controlled con-
tainer (20◦C). The RH of the sampling air was kept to be-
low 30 % using an automatic regenerating adsorption aerosol
dryer (Tuch et al., 2009).

The hygroscopic growth factor (HGF) is defined as the ra-
tio of the particle mobility diameter,D(RH), at a given RH
to the dry diameter,Dd:

HGF(RH) =
D(RH)

Dd
. (1)

The TDMAinv method developed by Gysel et al. (2009)
was used to invert the HTDMA data. Dry scans (under
RH< 10 %) are used to calibrate any offset between DMA1
and DMA2 and define the width of the HTDMA’s transfer
function (Gysel et al., 2009). The uncertainty for HGF of
ammonium sulfate particles derived at RH= 90 % is around
2.5 % (Massling et al., 2003).

2.3 Other useful parameters

Other measured parameters used in the data analysis and
corresponding instruments are given in Table 1. To esti-
mate the sulfuric acid (H2SO4) concentration, we referred to
the global radiation data measured at Schmücke rather than
Goldlauter because the mountain shadow blocked the sun-
light in the morning at Goldlauter.

Backward air mass trajectories arriving at the sampling
site were calculated using the NOAA “HYSPLIT-4” trajec-
tory model (Draxler and Hess, 1998). The 72 h trajectories
terminated on a height of 800 m above ground at 08:00,
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Table 1. Atmospheric parameters and instrumentation from the field experiment HCCT-2010 that are used in this study. All measurements
were taken from the Goldlauter station except global radiation, which was taken from the Schmücke (summit) station.

Parameters Instruments

Dry particle number size distribution (9–900 nm) (RH below 30 %) Scanning Mobility Particle Sizer (SMPS) (Wiedensohler et al., 2012)
Particle chemical composition High-Resolution Time-of-Flight Aerosol Mass Spectrometer (AMS) (DeCarlo et al., 2006)
NH3 MARGA semi-continuous ambient air monitoring system (ten Brink et al., 2007)
SO2 and O3 TE 49C-TL O3 monitor, TE43C-TL SO2 monitor
Wind speed, wind direction, air temperature, and global radiation Davis Vantage Pro2 weather station

10:00, 12:00, 14:00, 16:00 and 18:00 local time (UTC+01)
will be used in further analysis.

3 Methodology

3.1 Derivation of the soluble particle fraction

Based on the Zdanovskii–Stokes–Robinson (ZSR) method
(Zdanovskii, 1948; Stokes and Robinson, 1966), the HGF of
a mixture can be estimated from the HGFi of the pure com-
ponents and their respective volume fractions,εi (Malm and
Kreidenweis, 1997):

HGFmixed =

(∑
i

εiHGF3
i

)1/3

. (2)

Here, we assume that two components including soluble and
insoluble fractions contribute to the particle growth (also re-
fer to Ehn et al., 2007; Swietlicki et al., 1999). The soluble
fraction is assumed as ammonium sulfate, and the insoluble
fraction is organics. Then,ε of soluble fraction can be calcu-
lated by

ε(NH4)2SO4−equivalent=
HGF3

measured− 1

HGF3
(NH4)2SO4

− 1
, (3)

where HGFmeasuredis the HGF of particle measured by HT-
DMA, and HGF(NH4)2SO4 is the HGF of pure (NH4)2SO4
particle with the same size. When calculating HGF(NH4)2SO4

in different diameters, the parameterizations for (NH4)2SO4
water activity developed by Potukuchi and Wexler (1995)
and the density reported by Tang and Munkelwitz (1994) are
used. The Kelvin term was considered in the calculation.

The assumption of insoluble organic fraction may lead
to overestimate the soluble fraction because atmospherically
relevant secondary organics typically have a growth factor
larger than 1 (e.g., Varutbangkul et al., 2006). This implies
that in the presence of several classes of hygroscopic sub-
stances,ε derived from Eq. (3) is only an “equivalent” sol-
uble fraction (i.e., assuming ammonium sulfate as the only
soluble substance).εH2SO4−equivalentis therefore an upper es-
timate for the true soluble volume fraction. The advantage
of using soluble fraction term is to allow us analyzing the
particle hygroscopicity independently of differences in size.

The uncertainty of the estimated soluble volume fraction is
around 5 %, which was derived from the measurement un-
certainty of HGF (2.5 %) according to the error propagation
function.

3.2 Estimation of H2SO4 concentration

The H2SO4 concentration is estimated according to the proxy
reported by Mikkonen et al. (2011):

[H2SO4]=8.21×10−3
·k·Radiation·[SO2]

0.62(CS·RH)−0.13, (4)

wherek is the reaction rate constant, which is calculated ac-
cording to Eq. (3) in Mikkonen et al. (2011) and is scaled by
multiplying it with 1012. CS is the condensation sink, which
determines how rapidly molecules will condense onto pre-
existing aerosols (Kulmala et al., 2005). CS in s−1 is calcu-
lated according to Dal Maso et al. (2005) under dry condi-
tion. Radiation is global radiation in W m−2, RH is relative
humidity in %. SO2 is the sulfur dioxide concentration in
molecules cm−3.

In Mikkonen et al.’s (2011) study, they pointed out the
proxy is the worst for predicting H2SO4 concentration at
a mid-level mountain site in Germany (The Meteorological
Observatory Hohenpeissenberg, HPB). However, we com-
pared the key variables, which were used in Eq. (4), mea-
sured at our measuring site with different sites in Mikkonen
et al.’s (2011) paper. It was found that these key variables in
our measurement site are more similar to other stations (Mel-
pitz and Hyytïalä) rather than HPB. Therefore, the H2SO4
concentration estimated by this proxy may not produce an
extreme high error. Here, relative error in [H2SO4] estima-
tion using Eq. (4) is considered as 40 % (Mikkonen et al.,
2011).

3.3 Calculation of particle growth rate

The evolution of the particle number size distribution of nu-
cleation mode over time in the ambient can be well charac-
terised by an evolving log-normal distribution (Stolzenburg
et al., 2005; Lee et al., 1984, 1990):

dN

dlnDp
=

N
√

2πZ
exp

(
−

ln2(Dp/Dg
)

2Z

)
, (5)

whereDp is particle diameter,N andDg, are respectively
total particle number concentration and geometric number

www.atmos-chem-phys.net/13/6637/2013/ Atmos. Chem. Phys., 13, 6637–6646, 2013



6640 Z. Wu et al.: Implications for the chemical species contributing to particle growth

mean particle diameter (GMD). HereZ = ln2σg, andσg is
geometric number standard deviation of the mode.

The observed growth rate (GRobs) can be calculated using
the following equation over a certain time period:

GRobs=
dDg

dt
. (6)

The growth rate is also calculated using Lagrangian consid-
eration. If there is a good airflow connectivity between two
sampling sites (Here upwind site A and downwind site B),
the change in particle size can be observed when air mass
transported from A to B. Hence, the Lagrangian growth rate
(GRLag) can be estimated:

GRLag =
Dg,B − Dg,A

1T
, (7)

whereDg,A is the GMD of particle number size distribution
measured in site A at timeT , andDg,B is the GMD in site
B at timeT + 1T . 1T is the time interval during which air
parcel travelled from A to B.

3.4 Particle growth contributed by H2SO4 condensation

Theoretically, the vapor concentration required for growth
rate of 1 nm h−1 in certain particle size ranges can be cal-
culated according to (Nieminen et al., 2010):

CGR=1nmh−1 =
2ρvdv

γmv1t
·

√
πmv

8kT
(8)

·

[
2x1 + 1

x1 (x1 + 1)
−

2x0 + 1

x0 (x0 + 1)
+ 2ln

(
x1 (x0 + 1)

x0 (x1 + 1)

)]
,

wherex0 and x1 are the ratios of the vapour molecule di-
ameter (dv) to the initial and final particle diameter, respec-
tively. The mass (mv) and density (ρv) of H2SO4 applied in
this study are 135 amu and 1650 kg m−3, respectively, corre-
sponding to hydrated H2SO4 molecules (Kurt́en et al., 2007).
It should note that Eq. (8) was developed specially for par-
ticle with diameter of 3–7 nm. For larger particles (> 10 nm,
the case in this study), this method gives similar results to
that calculated using the Fuchs–Sutugin approach (Niemi-
nen et al., 2010). The calculatedCGR=1nmh−1H2SO4

may be
an underestimate because it is assumed that every H2SO4
molecule colliding with the particle is attached to it which
is not necessarily the case.

Then the growth rate contributed by H2SO4 condensation
during the time period used for the determination of GR is
calculated directly as

GRH2SO4 = [H2SO4]det/CGR=1nmh−1,H2SO4
, (9)

where [H2SO4]det is the median value from the measured
H2SO4 concentration during the timeframe for the determi-
nation of GR. Here, the GRH2SO4calculated from Eq. (9) is
an upper limit due toCGR=1nmh−1,H2SO4

is a lower limit.

For a spherical particle, its volume change (1v) due to
condensational growth within the time interval of1t can be
simply calculated:

1v =
π

6
·

(
D3

pt
− D3

p0

)
=

π

6
·
(
Dpt − Dp0

)
(10)

·

(
D2

pt
+ DptDp0 + D2

p0

)
.

Here

Dpt − Dp0 = GRobs· 1t, (11)

whereDpt andDp0 are the GMDs at timet = 0 andt = 1t ,
respectively.

The observed growth rate can be presented as the sum of
the growth rates due to H2SO4 (GRH2SO4) and organic vapors
(GRorg) condensation (Paasonen et al., 2010):

GRobs= GRH2SO4 + GROrg. (12)

By combing Eqs. (10–12), the overall change of particle vol-
ume concentration can be separated into two fractions, con-
tributing by H2SO4 and organic vapors condensation. The
fraction contributed by H2SO4 can be presented as

1vH2SO4 =
π

6
·

(
D2

pt
+ DptDp0 + D2

p0

)
· GRH2SO4 ·1t. (13)

We assumed that the original particle only consists of am-
monium sulfate. Then, the volume fraction of (NH4)2SO4 in
total particle volume (Vt), ε(NH4)2SO4, can be estimated as

ε(NH4)2SO4 =
v0 + 1vH2SO4

π · D3
pt

/
6

, (14)

wherev0 is the original particle volume at time 0. Here, as-
suming original particle as ammonium sulfate may not cause
larger error due to the tiny mass compared to the particles
after growing.

As mentioned above, the GRH2SO4 is an upper limit, hence
1vH2SO4 in Eq. (13) is an upper limit. Thus, the volume frac-
tion of (NH4)2SO4 calculated from Eq. (14) is upper esti-
mation. One should also keep in mind that the neutralization
of H2SO4 by NH3 could also lead to the increase in particle
volume, which was not considered in Eq. (13).

4 Results

4.1 The observations of NPF events

Two NPF events were observed on October 12 (DOY= 284)
and 14 (DOY= 286). The temporal evolution of the parti-
cle number size distribution at Goldlauter and Schmücke re-
search stations and the wind direction and speed at Schmücke
site are displayed in Fig. 1. On 12 October, the event started
at noon, i.e., at a time when temperature was rapidly in-
creasing, and RH decreasing. During this event, northeast

Atmos. Chem. Phys., 13, 6637–6646, 2013 www.atmos-chem-phys.net/13/6637/2013/
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Fig. 1. The evolution of particle number size distribution and
weather conditions on 12 and 14 October 2010.

winds prevailed at wind speeds around 2 m s−1. As shown in
Fig. 2a, no changes in the pathway of air mass arriving at the
sampling site were observed during the course of NPF event
on 12 October. This event lasted several hours and showed a
classical clear growth process.

The second event occurred on 14 October, starting at
11:00, and is also associated with a decreasing RH and an
increasing temperature. At 14:00, the event was interrupted
when the wind direction switched from south to north. Af-
terwards, a burst in nucleation mode with relatively larger
particles was observed. They showed no significant growth
until the event ended at around 18:00. On 14 October, the
backward trajectories showed that the air mass significantly
changed at noon, as shown in Fig. 2b. After 14:00, the air
parcels spent less time over continental areas in contrast to
those before 14:00. This may bring clean air, which contains
less condensable vapors.

As shown in Fig. 3 the burst in 10–25 nm particle num-
ber concentration was not accompanied by a SO2 spike, thus
confirming that the newly formed particles were not pro-
duced inside a plume of any nearby source. Both NPF events
occurred when the H2SO4 concentration was relatively high.
This is consistent with the previous studies showing that
H2SO4 plays an important role in atmospheric nucleation
and early growth (e.g., Birmili et al., 2003; Kulmala et al.,
2004). During the NPF event on October 12, mean NH3 and
O3 concentrations are 0.7 µg m−3 and 16.5 ppb, respectively.
In contrast, on October 14 a much lower NH3 concentration
(0.09 µg m−3) and higher O3 concentration (28.0 ppbv) were
observed, as shown in Fig. 3.

4.2 Particle hygroscopicity during NPF events

As shown in Fig. 4, the GMDs of newly formed particles
increased from 10 nm to 45 nm between 13:00 and 20:00
on 12 October. During this event, the HGFs of 30, 35, 40,
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Fig. 2. 72 h backward trajectory of the air mass (800 m above
ground level) arriving at the sampling site during NPF events. The
black dots in the plot indicate the measurement site.
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Fig. 3.Time series of trace gases concentration and particle number
concentration of nuclei mode on NPF days.

and 45 nm particles ranged from 1.4 to 1.55, which is much
higher than that (HGFs of 30 and 50 nm particles are around
1.3) observed by Ehn et al. (2007). On 14 October, the sig-
nificant change in GMDs was not observed during the event
because the event was prematurely cut off due to an air mass
change (see Fig. 2b). The HGFs of 25 and 30 nm particles
were between 1.2 and 1.35. The HGFs showed a decreasing
trend during the course of the event. This phenomenon was
independent of particle size for both events.

As shown in Fig. 4a2, the soluble equivalent volume frac-
tion of nucleation mode particles was between 0.6 and 0.7
on 12 October. During the subsequent particle growth, the
soluble fraction decreased. Such a decrease in particle hy-
groscopicity along with modal diameter growth was also ob-
served in previous experiments in Finland (e.g., Ehn et al.,
2007; Kulmala et al., 2001). The significant decline took
place between 18:00 and 20:00. This is because the H2SO4
concentration decreased significantly, thereby the H2SO4
condensation played a minor role in particle growth dur-
ing this timeframe. Simultaneously, ambient temperature de-
creased from 9 to 4◦C. Lower temperature facilitates the
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Fig. 4: The temporal evolution of GMD, HGF, and the soluble equivalent fraction (εH2SO4-720 
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Fig. 4. The temporal evolution of GMD, HGF, and the soluble
equivalent fraction (εH2SO4−equivalent) during the two NPF events.
Time is indicated in local time.

condensation of semi-volatile organic vapors onto the newly
formed particles.

On 14 October, the soluble fraction accounts for 30 %
of 25 nm particles at 15:30. In comparison with 12 Octo-
ber, this can be interpreted that organic condensable vapors
contributed more to the particle growth at smaller nucle-
ation mode particle sizes. On 14 October, no obvious particle
growth could be observed as a result of the air mass change,
whereas the soluble fraction of 30 nm particle decreased to
20 % at the end of event. One possible reason is chemical re-
actions occurred in the particle phase and produced less hy-
drophilic compounds. Recently, laboratory experiments gave
evidences that organic vapors (2,4-hexadienal, glyoxal and
trimethylamine) enhance the growth of H2SO4 nanoparticles
by producing oligomers, polymers and alkylammonium sul-
fates in the particle phase (Wang et al., 2010). In comparison
with ammonium sulfate and sulfuric acid, these compounds
have lower hygroscopicity. Another possible reason is more
hydrophobic compounds condensed on particles and make
particle grow, whereas, the transport and dilution of spatially
inhomogeneous aerosols may cause no obvious growth in nu-
cleation mode.

4.3 Discussion of the chemical species contributing to
particle growth

Table 2 gives a summary of the calculated parameters dur-
ing the course of the NPF events. The [H2SO4] in the ta-
ble means the median sulfuric acid concentration during the
time period listed in the first column of Table 1. By consid-
ering the uncertainty of 40 % in [H2SO4] estimation, the GR
contributed by H2SO4 condensation (GRH2SO4) ranged from
0.16 to 0.39 nm h−1 on 12 October. On average, the GRH2SO4

only accounts for around 6.5 % of the observed growth rate
(GRobs= 4.2 nm h−1). Several previous studies also reported

that the participation of H2SO4 to the nucleation mode parti-
cle growth rates is below 10 % in Hyytiälä, Melpitz, Heidel-
berg, and Hohenpeissenberg (Boy et al., 2005; Paasonen et
al., 2010; Fiedler et al., 2005). After ruling out H2SO4 con-
densation as sources of particle growth, low volatile organics
may be potential contributors to the remaining growth rate.

On average, the volume fraction (ε(NH4)2SO4) contributed
by H2SO4 condensation is between 4.9–10.1 % during the
NPF event on 12 October. By comparing the soluble frac-
tion (εH2SO4−equivalent= 58.5±2.9 %) derived HTDMA, one
can find that only a minor soluble fraction can be ex-
plained by H2SO4 condensation. This may indicate that some
other soluble chemical compounds contributing to the parti-
cle growth. Recently, amines in forming organic salts were
proposed to be a pathway for contributing to atmospheric
nanoparticle growth (Smith et al., 2010; Barsanti et al.,
2009). Amines are stronger bases than ammonium and have
been shown to displace ammonium from ammonium sulfate
(Bzdek et al., 2010; Qiu et al., 2011). Smith and cowork-
ers (2010) have shown that alkylammonium carboxylate salts
account for 20–50 % of the mass of freshly nucleated parti-
cles in locations that include Atlanta, Mexico City, Boulder,
and Hyytïalä, while sulfates account for only about 10 %.
A field measurement performed at a fairly remote mid-level
mountain site (The Sierra Nevada Mountain in California),
which is similar to our study showed a lack of a correla-
tion between particles with sulfate and ammonium during
the NPF events (Creamean et al., 2011). Creamean et al.
(2011) found that amines and sulfate present within the same
newly formed individual particle, implying amines could be
responsible for particle growth. Moreover, laboratory mea-
surements of alkyl-ammonium-carboxylate salt nanoparti-
cles showed only slightly lower hygroscopicity than ammo-
nium sulfate nanoparticles (Smith et al., 2010). Therefore,
amines may partly explain the missing source of soluble frac-
tion.

During the event on 14 October, the median H2SO4 con-
centration is 4.1× 106 molecule cm−3. Correspondingly, the
estimated growth rate is 0.14–0.32 nm h−1. This may cause
an increase in particle hygroscopicity. However, the HTDMA
measurements show an inverse pattern with decreasing sol-
uble fraction. This observation reinforced that the condensa-
tion of organic vapor or chemical reactions in the particulate
phase may play a key role in the evolvement of newly formed
particles during this event.

4.4 Comparison between GRobs and GRLag

The particle growth rate GRLag is now calculated using La-
grangian consideration. The calculation is based on the pic-
ture that particles are formed in the upwind region of the
HCCT area, and subsequently transported across the mea-
surement sites. For the methodological comparison of growth
rates, the NPF event on 12 October 2010 is analyzed. Due
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Table 2.The observed and calculated growth rate.

Time period GMDa [H2SO4] # cm−3 GRobsnm h−1 GRH2SO4 nm h−1 εH2SO4 εH2SO4−equivalent
b

13:00–20:00, 12 Oct 45 5.1× 106 4.2 0.16–0.39 4.9–10.1 % 58.5± 2.9 %
15:30–18:00, 14 Oct 25 4.1× 106 0 0.14–0.32 8.6–11.4 % 22.0± 1.1 %

a The particle diameter reached after the growth of newly formed particle at the end of time period given in the first column.b The water-soluble fraction of the particles
with the same size of GMDs was calculated from Eq. (3).

to it is foggy at Gehlberg station, here Schmücke and Gold-
lauter stations are considered only (see Supplement).

Calculating GRLag requires an analysis of the atmospheric
flow across the sites Schmücke (upwind) and Goldlauter
(downwind). Besides pure meteorological considerations in-
volving temperature, wind speed and wind direction, we
chose the number concentration of 102 nm particles (N102)

as a preferential tracer for air flow connectivity. One partic-
ular reason is that an examination of particle size distribu-
tions during HCCT suggested that this particle size range was
the least influenced by any particle formation, deposition, or
cloud activation processes during transport. (Details of this
topic are not shown here; they will be part of a forthcoming
paper in this special issue.)

Figure 1 shows that the wind direction at Schmücke strad-
dled around 45◦ (northeast) on 12 October. The average wind
speed was 2.3 m s−1 during the NPF event. Figure 5a shows
similar levels ofN102 at Schm̈ucke and Goldlauter between
12:00 and 18:00 LT. These arguments indicate a direct flow
connection between Schmücke and Goldlauter. At this wind
speed, the travel time of the air parcel was estimated to be
25 min. This travel time agrees with the time delay in the
number of concentrations of 19 nm particles at Schmücke
and 22 nm particles at Goldlauter (shown in Fig. 5b), i.e., the
observations are consistent with the picture of particle forma-
tion upwind the HCCT sites and subsequent transport of that
air parcel across the study area. Here, the number concentra-
tion of 22 nm particles at Goldlauter is taken considering that
19 nm particles will grow to a larger size when they traveled
from Schm̈ucke to Goldlauter. For the evaluation of Eq. (7)
we assume this observed time difference1T of 25 min.

We subsequently evaluated differences in the nucleation
mode particle size between Schmücke and Goldlauter sta-
tions by comparing the log-normal modal diameters ob-
tained from a least-squares fitting routine. The size difference
GRLag could be calculated at the time resolution of the SMPS
measurements, i.e., every 5 min. Averaging over the time
period 13:00–18:00 LT yields a mean particle growth rate
3.8 (± 2.6) nm h−1 obtained from this inter-site data compar-
ison. During this period, GRobs calculated from Eq. (6) is
5.0 nm h−1, i.e., 24 % higher than GRLag. In view of the con-
siderable uncertainties involved in both methods (we esti-
mate the uncertainty of GRobs to amount to roughly a factor
of two), we consider both values consistent.
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Fig. 5. The time series of particle number concentration during the
NPF event on 12 October.

5 Conclusions

The particle hygroscopicity of the newly formed particles
was investigated to analyze the chemical species contribut-
ing to particle growth during the NPF events at a mid-level
mountain range, Tḧuringer Wald, in central Germany. Two
cases with and without clear growth process are analyzed in
this study. A significant difference in particle hygroscopicity
was observed between the two NPF events, indicating that
the chemical species driving particle growing were not ex-
actly the same. During both events, the hygroscopic growth
of newly formed particles decreased with particle growing.
Apparently, the chemical nature of the condensing vapors
changed during the particle growth process from more to less
hygroscopic species.

During the NPF event with clear growth, the hygroscopic
growth factor of newly formed particles ranged from 1.4 to
1.55. On average, the particle growth rate contributing by
H2SO4 condensation only accounts for around 6.5 % of the
observed growth rate. Estimations showed that sulfuric acid
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condensation explained, however, only around 10 % of that
soluble particle fraction; therefore, the formation of addi-
tional water-soluble matter appears imperative to explain the
missing soluble fraction. Recent-identified amines in newly
formed particles may partly explain the missing source of
soluble fraction. The particle growth rate was respectively
determined using log-normal distribution function method
(GRobs) and Langragian consideration (GRLag). GRLag and
GRobs are respectively 3.8 (± 2.6) nm h−1 and 5 nm h−1.
In view of the considerable uncertainties involved in both
methods, we consider the growth rates derived from both
methods consistent.

Edited by: G. McFiggans

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/13/
6637/2013/acp-13-6637-2013-supplement.pdf.
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Sipilä, M., Paasonen, P., Kulmala, M., and Lihavainen, H.: Ho-
mogenous nucleation of sulfuric acid and water at close to atmo-
spherically relevant conditions, Atmos. Chem. Phys., 11, 5277–
5287, doi:10.5194/acp-11-5277-2011, 2011.

Bzdek, B. R., Ridge, D. P., and Johnston, M. V.: Amine exchange
into ammonium bisulfate and ammonium nitrate nuclei, Atmos.
Chem. Phys., 10, 3495–3503, doi:10.5194/acp-10-3495-2010,
2010.

Creamean, J. M., Ault, A. P., Ten Hoeve, J. E., Jacobson, M. Z.,
Roberts, G. C., and Prather, K. A.: Measurements of aerosol
chemistry during new particle formation events at a remote
rural mountain site, Environ. Sci. Technol., 45, 8208–8216,
doi:10.1021/es103692f, 2011.

Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T.,
Aalto, P. P., and Lehtinen, A. K. E. J.: Formation and growth of

fresh atmospheric aerosols: Eight years of aerosol size distribu-
tion data from smear ii, hyytiälä, finland, Boreal Environ. Res.,
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C. D.: On the formation, growth and composition of nucle-
ation mode particles, Tellus B, 53, 479–490, doi:10.1034/j.1600-
0889.2001.530411.x, 2001.

Kulmala, M., Vehkam̈aki, H., Peẗajä, T., Dal Maso, M., Lauri,
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