Articles | Volume 13, issue 13
https://doi.org/10.5194/acp-13-6403-2013
https://doi.org/10.5194/acp-13-6403-2013
Research article
 | 
08 Jul 2013
Research article |  | 08 Jul 2013

Air–snow transfer of nitrate on the East Antarctic Plateau – Part 1: Isotopic evidence for a photolytically driven dynamic equilibrium in summer

J. Erbland, W. C. Vicars, J. Savarino, S. Morin, M. M. Frey, D. Frosini, E. Vince, and J. M. F. Martins

Related authors

Improvements of the land surface configuration to better simulate seasonal snow cover in the European Alps with the CNRM-AROME (cycle 46) convection-permitting regional climate model
Diego Monteiro, Cécile Caillaud, Matthieu Lafaysse, Adrien Napoly, Mathieu Fructus, Antoinette Alias, and Samuel Morin
EGUsphere, https://doi.org/10.5194/egusphere-2024-249,https://doi.org/10.5194/egusphere-2024-249, 2024
Short summary
Drivers of late Holocene ice core chemistry in Dronning Maud Land: The context for the ISOL-ICE project
V. Holly L. Winton, Robert Mulvaney, Joel Savarino, Kyle R. Clem, and Markus M. Frey
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-96,https://doi.org/10.5194/cp-2023-96, 2023
Revised manuscript accepted for CP
Short summary
Simulated hydrological effects of grooming and snowmaking in a ski resort on the local water balance
Samuel Morin, Hugues François, Marion Réveillet, Eric Sauquet, Louise Crochemore, Flora Branger, Étienne Leblois, and Marie Dumont
Hydrol. Earth Syst. Sci., 27, 4257–4277, https://doi.org/10.5194/hess-27-4257-2023,https://doi.org/10.5194/hess-27-4257-2023, 2023
Short summary
Projection of snowfall extremes in the French Alps as a function of elevation and global warming level
Erwan Le Roux, Guillaume Evin, Raphaëlle Samacoïts, Nicolas Eckert, Juliette Blanchet, and Samuel Morin
The Cryosphere, 17, 4691–4704, https://doi.org/10.5194/tc-17-4691-2023,https://doi.org/10.5194/tc-17-4691-2023, 2023
Short summary
Multi-decadal analysis of past winter temperature, precipitation and snow cover data in the European Alps from reanalyses, climate models and observational datasets
Diego Monteiro and Samuel Morin
The Cryosphere, 17, 3617–3660, https://doi.org/10.5194/tc-17-3617-2023,https://doi.org/10.5194/tc-17-3617-2023, 2023
Short summary

Related subject area

Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A seasonal analysis of aerosol NO3 sources and NOx oxidation pathways in the Southern Ocean marine boundary layer
Jessica M. Burger, Emily Joyce, Meredith G. Hastings, Kurt A. M. Spence, and Katye E. Altieri
Atmos. Chem. Phys., 23, 5605–5622, https://doi.org/10.5194/acp-23-5605-2023,https://doi.org/10.5194/acp-23-5605-2023, 2023
Short summary
Nitrate chemistry in the northeast US – Part 1: Nitrogen isotope seasonality tracks nitrate formation chemistry
Claire Bekker, Wendell W. Walters, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4185–4201, https://doi.org/10.5194/acp-23-4185-2023,https://doi.org/10.5194/acp-23-4185-2023, 2023
Short summary
Nitrate chemistry in the northeast US – Part 2: Oxygen isotopes reveal differences in particulate and gas-phase formation
Heejeong Kim, Wendell W. Walters, Claire Bekker, Lee T. Murray, and Meredith G. Hastings
Atmos. Chem. Phys., 23, 4203–4219, https://doi.org/10.5194/acp-23-4203-2023,https://doi.org/10.5194/acp-23-4203-2023, 2023
Short summary
Photolytic modification of seasonal nitrate isotope cycles in East Antarctica
Pete D. Akers, Joël Savarino, Nicolas Caillon, Olivier Magand, and Emmanuel Le Meur
Atmos. Chem. Phys., 22, 15637–15657, https://doi.org/10.5194/acp-22-15637-2022,https://doi.org/10.5194/acp-22-15637-2022, 2022
Short summary
Atmospheric methane isotopes identify inventory knowledge gaps in the Surat Basin, Australia, coal seam gas and agricultural regions
Bryce F. J. Kelly, Xinyi Lu, Stephen J. Harris, Bruno G. Neininger, Jorg M. Hacker, Stefan Schwietzke, Rebecca E. Fisher, James L. France, Euan G. Nisbet, David Lowry, Carina van der Veen, Malika Menoud, and Thomas Röckmann
Atmos. Chem. Phys., 22, 15527–15558, https://doi.org/10.5194/acp-22-15527-2022,https://doi.org/10.5194/acp-22-15527-2022, 2022
Short summary

Cited articles

Alexander, B., Savarino, J., Kreutz, K. J., and Thiemens, M. H.: Impact of preindustrial biomass-burning emissions on the oxidation pathways of tropospheric sulfur and nitrogen, J. Geophys. Res., 109, D08303, https://doi.org/10.1029/2003JD004218, 2004.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Blunier, T., Floch, G. L., Jacobi, H.-W., and Quansah, E.: Isotopic view on nitrate loss in A}ntarctic surface snow, Geophys. Res. Lett., 32, {L13501, https://doi.org/10.1029/2005GL023011, 2005.
Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 4905–4912, https://doi.org/10.1021/ac020113w, 2002.
Chu, L. and Anastasio, C.: Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice, J. Phys. Chem., 107, 9594–9602, 2003.
Altmetrics
Final-revised paper
Preprint