Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 13, 4941-4961, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research Article
14 May 2013
CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project
C. Lac1, R. P. Donnelly1, V. Masson1, S. Pal2,3, S. Riette1, S. Donier1, S. Queguiner1, G. Tanguy1, L. Ammoura2, and I. Xueref-Remy2
1CNRM-GAME (CNRS-Meteo-France), UMR3589, Toulouse, France
2Laboratoire des Sciences du Climat et de l'Environnement (LSCE), IPSL-UVSQ-CNRS-CEA, Orme des Merisiers, Gif-Sur-Yvette, France
3Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA

Abstract. Accurate simulation of the spatial and temporal variability of tracer mixing ratios over urban areas is a challenging and interesting task needed to be performed in order to utilise CO2 measurements in an atmospheric inverse framework and to better estimate regional CO2 fluxes. This study investigates the ability of a high-resolution model to simulate meteorological and CO2 fields around Paris agglomeration during the March field campaign of the CO2-MEGAPARIS project. The mesoscale atmospheric model Meso-NH, running at 2 km horizontal resolution, is coupled with the Town Energy Balance (TEB) urban canopy scheme and with the Interactions between Soil, Biosphere and Atmosphere CO2-reactive (ISBA-A-gs) surface scheme, allowing a full interaction of CO2 modelling between the surface and the atmosphere. Statistical scores show a good representation of the urban heat island (UHI) with stronger urban–rural contrasts on temperature at night than during the day by up to 7 °C. Boundary layer heights (BLH) have been evaluated on urban, suburban and rural sites during the campaign, and also on a suburban site over 1 yr. The diurnal cycles of the BLH are well captured, especially the onset time of the BLH increase and its growth rate in the morning, which are essential for tall tower CO2 observatories. The main discrepancy is a small negative bias over urban and suburban sites during nighttime (respectively 45 m and 5 m), leading to a few overestimations of nocturnal CO2 mixing ratios at suburban sites and a bias of +5 ppm. The diurnal CO2 cycle is generally well captured for all the sites. At the Eiffel tower, the observed spikes of CO2 maxima occur every morning exactly at the time at which the atmospheric boundary layer (ABL) growth reaches the measurement height. At suburban ground stations, CO2 measurements exhibit maxima at the beginning and at the end of each night, when the ABL is fully contracted, with a strong spatio-temporal variability. A sensitivity test without urban parameterisation removes the UHI and underpredicts nighttime BLH over urban and suburban sites, leading to large overestimation of nocturnal CO2 mixing ratio at the suburban sites (bias of +17 ppm). The agreement between observation and prediction for BLH and CO2 concentrations and urban–rural increments, both day and night, demonstrates the potential of using the urban mesoscale system in the context of inverse modelling

Citation: Lac, C., Donnelly, R. P., Masson, V., Pal, S., Riette, S., Donier, S., Queguiner, S., Tanguy, G., Ammoura, L., and Xueref-Remy, I.: CO2 dispersion modelling over Paris region within the CO2-MEGAPARIS project, Atmos. Chem. Phys., 13, 4941-4961, doi:10.5194/acp-13-4941-2013, 2013.
Search ACP
Final Revised Paper
Discussion Paper