( ! ) Warning: file_get_contents(/var/www/publisher/classes/GetJournlaData_ERROR/cGetJournlaData_ERRORApplication.inc): failed to open stream: No such file or directory in /var/www/publisher/classes/npg/cNpgDynamicLibraryXP.inc on line 4984
Call Stack
#TimeMemoryFunctionLocation
10.0027232280{main}( )../library_plausibility_checker.php:0
214252.908478438400Copernicus\App\Repository\SSHRepository->repairBrokenArticles( )../library_plausibility_checker.php:179
318512.0519118215024Copernicus\App\ContentGenerator->getArticleContent( )../SSHRepository.php:358
418512.0519118231600JournalDynamicLibrary::ProcessRequest( )../ContentGenerator.php:32
518512.0519118232216JournalDynamicLibrary::renderPaperWithTabs( )../cNpgDynamicLibraryXP.inc:575
618512.0519118232264JournalDynamicLibrary::renderRightColumnBoxes( )../cNpgDynamicLibraryXP.inc:8308
718512.0520118234296JournalDynamicLibrary::renderBoxSpecialIssues( )../cNpgDynamicLibraryXP.inc:4307
818512.0621118237240JournalDynamicLibrary::getConstStringValueFromJournalController( )../cNpgDynamicLibraryXP.inc:5386
918512.0621118237560file_get_contents ( )../cNpgDynamicLibraryXP.inc:4984
ACP - Abstract - Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
Atmos. Chem. Phys., 13, 3063-3085, 2013
www.atmos-chem-phys.net/13/3063/2013/
doi:10.5194/acp-13-3063-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)
D. S. Stevenson1, P. J. Young2,3,*, V. Naik4, J.-F. Lamarque5, D. T. Shindell6, A. Voulgarakis7, R. B. Skeie8, S. B. Dalsoren8, G. Myhre8, T. K. Berntsen8, G. A. Folberth9, S. T. Rumbold9, W. J. Collins9,**, I. A. MacKenzie1, R. M. Doherty1, G. Zeng10, T. P. C. van Noije11, A. Strunk11, D. Bergmann12, P. Cameron-Smith12, D. A. Plummer13, S. A. Strode14,15, L. Horowitz16, Y. H. Lee6, S. Szopa17, K. Sudo18, T. Nagashima19, B. Josse20, I. Cionni21, M. Righi22, V. Eyring22, A. Conley5, K. W. Bowman23, O. Wild24, and A. Archibald25
1School of GeoSciences, The University of Edinburgh, Edinburgh, UK
2Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado, USA
3Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA
4UCAR/NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
5National Center for Atmospheric Research, Boulder, Colorado, USA
6NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York, NY, USA
7Department of Physics, Imperial College London, London, UK
8CICERO, Center for International Climate and Environmental Research-Oslo, Oslo, Norway
9Met Office Hadley Centre, Exeter, UK
10National Institute of Water and Atmospheric Research, Lauder, New Zealand
11Royal Netherlands Meteorological Institute, De Bilt, the Netherlands
12Lawrence Livermore National Laboratory, Livermore, California, USA
13Canadian Centre for Climate Modeling and Analysis, Environment Canada, Victoria, British Columbia, Canada
14NASA Goddard Space Flight Centre, Greenbelt, Maryland, USA
15Universities Space Research Association, Columbia, MD, USA
16NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA
17Laboratoire des Sciences du Climat et de l'Environment, Gif-sur-Yvette, France
18Department of Earth and Environmental Science, Graduate School of Environmental Studies, Nagoya University, Nagoya, Japan
19National Institute for Environmental Studies, Tsukuba-shi, Ibaraki, Japan
20GAME/CNRM, Météo-France, CNRS – Centre National de Recherches Météorologiques, Toulouse, France
21Agenzia Nazionale per le Nuove Tecnologie, l'energia e lo Sviluppo Economico Sostenibile (ENEA), Bologna, Italy
22Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
23NASA Jet Propulsion Laboratory, Pasadena, California, USA
24Lancaster Environment Centre, University of Lancaster, Lancaster, UK
25Centre for Atmospheric Science, University of Cambridge, UK
*now at: Lancaster Environment Centre, University of Lancaster, Lancaster, UK
**now at: Department of Meteorology, University of Reading, UK

Abstract. Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m−2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used – we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m−2 DU−1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m−2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport. Climate change has relatively small impacts on global mean tropospheric ozone RF.

Citation: Stevenson, D. S., Young, P. J., Naik, V., Lamarque, J.-F., Shindell, D. T., Voulgarakis, A., Skeie, R. B., Dalsoren, S. B., Myhre, G., Berntsen, T. K., Folberth, G. A., Rumbold, S. T., Collins, W. J., MacKenzie, I. A., Doherty, R. M., Zeng, G., van Noije, T. P. C., Strunk, A., Bergmann, D., Cameron-Smith, P., Plummer, D. A., Strode, S. A., Horowitz, L., Lee, Y. H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., Conley, A., Bowman, K. W., Wild, O., and Archibald, A.: Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 3063-3085, doi:10.5194/acp-13-3063-2013, 2013.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share