Articles | Volume 13, issue 21
https://doi.org/10.5194/acp-13-10859-2013
https://doi.org/10.5194/acp-13-10859-2013
Research article
 | 
07 Nov 2013
Research article |  | 07 Nov 2013

Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere

C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese

Related authors

Very-long-period oscillations in the atmosphere (0–110 km) – Part 2: Latitude– longitude comparisons and trends
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 23, 3267–3278, https://doi.org/10.5194/acp-23-3267-2023,https://doi.org/10.5194/acp-23-3267-2023, 2023
Short summary
A new method to detect and classify polar stratospheric nitric acid trihydrate clouds derived from radiative transfer simulations and its first application to airborne infrared limb emission observations
Christoph Kalicinsky, Sabine Griessbach, and Reinhold Spang
Atmos. Meas. Tech., 14, 1893–1915, https://doi.org/10.5194/amt-14-1893-2021,https://doi.org/10.5194/amt-14-1893-2021, 2021
Short summary
Very long-period oscillations in the atmosphere (0–110 km)
Dirk Offermann, Christoph Kalicinsky, Ralf Koppmann, and Johannes Wintel
Atmos. Chem. Phys., 21, 1593–1611, https://doi.org/10.5194/acp-21-1593-2021,https://doi.org/10.5194/acp-21-1593-2021, 2021
Short summary
Determination of time-varying periodicities in unequally spaced time series of OH* temperatures using a moving Lomb–Scargle periodogram and a fast calculation of the false alarm probabilities
Christoph Kalicinsky, Robert Reisch, Peter Knieling, and Ralf Koppmann
Atmos. Meas. Tech., 13, 467–477, https://doi.org/10.5194/amt-13-467-2020,https://doi.org/10.5194/amt-13-467-2020, 2020
Short summary
Long-term dynamics of OH * temperatures over central Europe: trends and solar correlations
Christoph Kalicinsky, Peter Knieling, Ralf Koppmann, Dirk Offermann, Wolfgang Steinbrecht, and Johannes Wintel
Atmos. Chem. Phys., 16, 15033–15047, https://doi.org/10.5194/acp-16-15033-2016,https://doi.org/10.5194/acp-16-15033-2016, 2016
Short summary

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024,https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Convective gravity wave events during summer near 54° N, present in both AIRS and Rayleigh–Mie–Raman (RMR) lidar observations
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024,https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Signatures of the Madden–Julian oscillation in middle-atmosphere zonal mean temperature: triggering the interhemispheric coupling pattern
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023,https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023,https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022,https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary

Cited articles

Birner, T., Sankey, D, and Shepherd, T. G.: The tropopause inversion layer in models and analyses, Geophys. Res. Lett., 33, L14804, https://doi.org/10.1029/2006GL026549, 2006.
Dörnbrack, A., Pitts, M. C., Poole, L. R., Orsolini, Y. J., Nishii, K., and Nakamura, H.: The 2009–2010 Arctic stratospheric winter – general evolution, mountain waves and predictability of an operational weather forecast model, Atmos. Chem. Phys., 12, 3659–3675, https://doi.org/10.5194/acp-12-3659-2012, 2012.
Douglass, A. R., Schoeberl, M. R., Stolarski, R. S., Waters III, J. J. M. R., Roche, A. E., and Massie, S. T.: Interhemispheric differences in springtime production of \chemHCl and ClONO2 in the polar vortices, J. Geophys. Res., 100, 13967–13978, 1995.
Fastie, W.: Ebert Spectrometer Reflections, Phys. Today, 4, 37–43, 1991.
Download
Altmetrics
Final-revised paper
Preprint