Atmos. Chem. Phys., 12, 6455-6473, 2012
www.atmos-chem-phys.net/12/6455/2012/
doi:10.5194/acp-12-6455-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Examining the impact of heterogeneous nitryl chloride production on air quality across the United States
G. Sarwar1, H. Simon2, P. Bhave1, and G. Yarwood3
1National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
2Office of Air Quality Planning and Standards, US Environmental Protection Agency, Research Triangle Park, NC, USA
3ENVIRON International Corporation, Novato, CA, USA

Abstract. The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2) which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2). Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality (CMAQ) modeling system. We then update the current model treatment of heterogeneous hydrolysis of N2O5 to include ClNO2 as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO2 production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO2 in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO2. With current estimates of tropospheric emissions, it modestly enhances monthly mean 8-h ozone (up to 1–2 ppbv or 3–4%) but causes large increases (up to 13 ppbv) in isolated episodes. This chemistry also substantially reduces the mean total nitrate by up to 0.8–2.0 μg m−3 or 11–21%. Modeled ClNO2 accounts for up to 6% of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that heterogeneous production of ClNO2 can further increase O3 and reduce TNO3 if elevated particulate-chloride levels are present in the atmosphere.

Citation: Sarwar, G., Simon, H., Bhave, P., and Yarwood, G.: Examining the impact of heterogeneous nitryl chloride production on air quality across the United States, Atmos. Chem. Phys., 12, 6455-6473, doi:10.5194/acp-12-6455-2012, 2012.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share