Articles | Volume 12, issue 7
https://doi.org/10.5194/acp-12-3311-2012
https://doi.org/10.5194/acp-12-3311-2012
Research article
 | 
05 Apr 2012
Research article |  | 05 Apr 2012

Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

G. P. Stiller, T. von Clarmann, F. Haenel, B. Funke, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, S. Lossow, and M. López-Puertas

Related subject area

Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022,https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022,https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022,https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Stratospheric water vapour and ozone response to the quasi-biennial oscillation disruptions in 2016 and 2020
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022,https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
A new methodology for measuring traveling quasi-5-day oscillations during sudden stratospheric warming events based on satellite observations
Zheng Ma, Yun Gong, Shaodong Zhang, Qiao Xiao, Chunming Huang, and Kaiming Huang
Atmos. Chem. Phys., 22, 13725–13737, https://doi.org/10.5194/acp-22-13725-2022,https://doi.org/10.5194/acp-22-13725-2022, 2022
Short summary

Cited articles

Andrews, A. E., Boering, K. A., Daube, B. C., Wofsy, S. C., Hintsa, E. J., Weinstock, E. M., and Bui, T. P.: Empirical age spectra for the lower tropical stratosphere from in situ observations of {CO2}: {I}mplications for stratospheric transport, J. Geophys. Res., 104, 26581–26595, 1999.
Austin, J. and Li, F.: On the relationship between the strength of the {B}rewer-{D}obson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, https://doi.org/10.1029/2006GL026867, 2006.
Austin, J., Wilson, J., Li, F., and V{ö}mel, H.: Evolution of water vapor and age of air in coupled chemistry climate model simulations of the stratosphere, J. Atmos. Sci., 64, 905–921, 2007.
Baldwin, M. P., Dameris, M., and Shepherd, T. G.: How will the Stratosphere affect climate change?, Science, 316, 1576–1577, https://doi.org/10.1126/science.1144303, 2007.
Download
Altmetrics
Final-revised paper
Preprint