Atmos. Chem. Phys., 12, 1483-1496, 2012
www.atmos-chem-phys.net/12/1483/2012/
doi:10.5194/acp-12-1483-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging
L. Müller1, M.-C. Reinnig1, K. H. Naumann2, H. Saathoff2, T. F. Mentel3, N. M. Donahue4, and T. Hoffmann1
1Johannes Gutenberg-Universität, Institute for inorganic Chemistry and analytical Chemistry, Duesbergweg 10–14, 55128 Mainz, Germany
2Karlsruhe Institute of Technology Institute for Meteorology and Climate Research (IMK-AAF), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
3Forschungszentrum Jülich GmbH, ICG-2: Troposphäre, 52425 Jülich, Germany
4Carnegie Mellon University Department of Chemical Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213-3890, USA

Abstract. This paper presents the results of mass spectrometric investigations of the OH-initiated oxidative aging of α-pinene SOA under simulated tropospheric conditions at the large aerosol chamber facility AIDA, Karlsruhe Institute of Technology. In particular, the OH-initiated oxidation of pure pinic and pinonic acid, two well-known oxidation products of α-pinene, was investigated. Two complementary analytical techniques were used, on-line atmospheric pressure chemical ionization/mass spectrometry (APCI/MS) and filter sampling followed by liquid chromatography/mass spectrometry (LC/ESI-MS). The results show that 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA), a very low volatile α-pinene SOA product and a tracer compound for terpene SOA, is formed from the oxidation of pinonic acid and that this oxidation takes place in the gas phase. This finding is confirmed by temperature-dependent aging experiments on whole SOA formed from α-pinene, in which the yield of MBTCA scales with the pinonic acid fraction in the gas phase. Based on the results, several feasible gas-phase radical mechanisms are discussed to explain the formation of MBTCA from OH-initiated pinonic acid oxidation.

Citation: Müller, L., Reinnig, M.-C., Naumann, K. H., Saathoff, H., Mentel, T. F., Donahue, N. M., and Hoffmann, T.: Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid – a mass spectrometric study of SOA aging, Atmos. Chem. Phys., 12, 1483-1496, doi:10.5194/acp-12-1483-2012, 2012.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share