Atmos. Chem. Phys., 12, 12133-12154, 2012
www.atmos-chem-phys.net/12/12133/2012/
doi:10.5194/acp-12-12133-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Age of stratospheric air in the ERA-Interim
M. Diallo1, B. Legras1, and A. Chédin2
1Laboratoire de Météorologie Dynamique, UMR8539, IPSL, UPMC/ENS/CNRS/Ecole Polytechnique, Paris, France
2Laboratoire de Météorologie Dynamique, UMR8539, IPSL, CNRS/Ecole Polytechnique/ENS/UPMC, Palaiseau, France

Abstract. The Brewer-Dobson mean circulation and its variability are investigated in the ERA-Interim over the period 1989-2010 by using an off-line Lagrangian transport model driven by analysed winds and heating rates.

At low and mid-latitudes, the mean age of air in the lower stratosphere is in good agreement with ages derived from aircraft, high altitude balloon and satellite observations of long-lived tracers. At high latitude and in the upper stratosphere, we find, however that the ERA-Interim ages exhibit an old bias, typically of one to two years.

The age spectrum exhibits a long tail except in the low tropical stratosphere which is modulated by the annual cycle of the tropical upwelling. The distribution of ages and its variability is consistent with the existence of two separate branches, shallow and deep, of the Brewer-Dobson circulation. Both branches are modulated by the tropical upwelling and the shallow branch is also modulated by the subtropical barrier.

The variability of the mean age is analysed through a decomposition in terms of annual cycle, QBO, ENSO and trend. The annual modulation is the dominating signal in the lower stratosphere and is maximum at latitudes greater than 50° in both hemispheres with oldest ages at the end of the winter. The phase of the annual modulation is also reversed between below and above 25 km. The maximum amplitude of the QBO modulation is of about 0.5 yr and is mostly concentrated within the tropics between 25 and 35 km. It lags the QBO wind at 30 \unit{hPa} by about 8 months. The ENSO signal is small and limited to the lower northen stratosphere.

The age trend over the 1989–2010 period, according to this ERA-Interim dataset, is significant and negative, of the order of −0.3 to −0.5 yr dec−1, within the lower stratosphere in the Southern Hemisphere and south of 40° N in the Northern Hemisphere below 25 km. The age trend is positive (of the order of 0.3 yr dec−1) in the mid stratosphere but there is no region of consistent significance. This suggests that the shallow and deep Brewer-Dobson circulations may evolve in opposite directions.

Finally, we find that the long lasting influence of the Pinatubo eruption can be seen on the age of air from June 1991 until the end of 1993 and can bias the statistics encompassing this period.


Citation: Diallo, M., Legras, B., and Chédin, A.: Age of stratospheric air in the ERA-Interim, Atmos. Chem. Phys., 12, 12133-12154, doi:10.5194/acp-12-12133-2012, 2012.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share