Atmos. Chem. Phys., 12, 11733-11751, 2012
www.atmos-chem-phys.net/12/11733/2012/
doi:10.5194/acp-12-11733-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil
J. Backman1, L. V. Rizzo2, J. Hakala1, T. Nieminen1, H. E. Manninen1, F. Morais3, P. P. Aalto1, E. Siivola1, S. Carbone4, R. Hillamo4, P. Artaxo3, A. Virkkula1,4, T. Petäjä1, and M. Kulmala1
1Division of Atmospheric Sciences, Department of Physics, University of Helsinki, Helsinki, Finland
2Department of Earth and Exact Sciences, Federal University of São Paulo, São Paulo, Brazil
3Institute of Physics, University of São Paulo, São Paulo, Brazil
4Finnish Meteorological Institute, Helsinki, Finland

Abstract. Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of São Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 × 104–3.2 × 104 cm−3 frequently exceeding 4 × 104 cm−3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12–33 Mm−1 and 21–64 Mm−1, respectively. The former one is equal to 1.8–5.0 μg m−3 of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (ω0) varied in the range 0.59–0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of ω0, the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend ω0 values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h−1. Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Citation: Backman, J., Rizzo, L. V., Hakala, J., Nieminen, T., Manninen, H. E., Morais, F., Aalto, P. P., Siivola, E., Carbone, S., Hillamo, R., Artaxo, P., Virkkula, A., Petäjä, T., and Kulmala, M.: On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil, Atmos. Chem. Phys., 12, 11733-11751, doi:10.5194/acp-12-11733-2012, 2012.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share