Atmos. Chem. Phys., 11, 8037-8052, 2011
www.atmos-chem-phys.net/11/8037/2011/
doi:10.5194/acp-11-8037-2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation
A. Arneth1,2, G. Schurgers1, J. Lathiere3, T. Duhl4, D. J. Beerling5, C. N. Hewitt6, M. Martin1, and A. Guenther4
1Physical Geography and Ecosystem Analysis, Lund University, Lund, Sweden
2Karlsruhe Institute for Technology, Institute for Meteorology and Climate Research/Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
3Laboratoire des Sciences du Climat et de l'Environnement – LSCE-IPSL, CEA-CNRS-UVSQ, UMR8212, Gif-sur-Yvette, France
4NCAR, Boulder, Colorado, USA
5Department of Animal and Plant Science, University of Sheffield, Sheffield S10 2TN, UK
6Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

Abstract. Due to its effects on the atmospheric lifetime of methane, the burdens of tropospheric ozone and growth of secondary organic aerosol, isoprene is central among the biogenic compounds that need to be taken into account for assessment of anthropogenic air pollution-climate change interactions. Lack of process-understanding regarding leaf isoprene production as well as of suitable observations to constrain and evaluate regional or global simulation results add large uncertainties to past, present and future emissions estimates. Focusing on contemporary climate conditions, we compare three global isoprene models that differ in their representation of vegetation and isoprene emission algorithm. We specifically aim to investigate the between- and within model variation that is introduced by varying some of the models' main features, and to determine which spatial and/or temporal features are robust between models and different experimental set-ups. In their individual standard configurations, the models broadly agree with respect to the chief isoprene sources and emission seasonality, with maximum monthly emission rates around 20–25 Tg C, when averaged by 30-degree latitudinal bands. They also indicate relatively small (approximately 5 to 10 % around the mean) interannual variability of total global emissions. The models are sensitive to changes in one or more of their main model components and drivers (e.g., underlying vegetation fields, climate input) which can yield increases or decreases in total annual emissions of cumulatively by more than 30 %. Varying drivers also strongly alters the seasonal emission pattern. The variable response needs to be interpreted in view of the vegetation emission capacities, as well as diverging absolute and regional distribution of light, radiation and temperature, but the direction of the simulated emission changes was not as uniform as anticipated. Our results highlight the need for modellers to evaluate their implementations of isoprene emission models carefully when performing simulations that use non-standard emission model configurations.

Citation: Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., and Guenther, A.: Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation, Atmos. Chem. Phys., 11, 8037-8052, doi:10.5194/acp-11-8037-2011, 2011.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share