Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Atmos. Chem. Phys., 11, 7839-7858, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research Article
03 Aug 2011
Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities
P. Reitz1,2, C. Spindler3, T. F. Mentel3, L. Poulain4, H. Wex4, K. Mildenberger4, D. Niedermeier4, S. Hartmann4, T. Clauss4, F. Stratmann4, R. C. Sullivan5, P. J. DeMott5, M. D. Petters6, B. Sierau7, and J. Schneider1
1Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
2Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Mainz, Germany
3Institute for Energy- and Climate Research Troposphere (IEK-8), Research Center Jülich GmbH, Jülich, Germany
4Department of Physics, Leibniz Institute for Tropospheric Research, Leipzig, Germany
5Department of Atmospheric Science, Colorado State University, Fort Collins, USA
6Department of Marine Earth and Atmospheric Science, North Carolina State University, Raleigh, USA
7Institute for Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland

Abstract. The ability of coated mineral dust particles to act as ice nuclei (IN) was investigated at LACIS (Leipzig Aerosol Cloud Interaction Simulator) during the FROST1- and FROST2-campaigns (Freezing of dust). Sulphuric acid was condensed on the particles which afterwards were optionally humidified, treated with ammonia vapour and/or heat. By means of aerosol mass spectrometry we found evidence that processing of mineral dust particles with sulphuric acid leads to surface modifications of the particles. These surface modifications are most likely responsible for the observed reduction of the IN activation of the particles. The observed particle mass spectra suggest that different treatments lead to different chemical reactions on the particle surface. Possible chemical reaction pathways and products are suggested and the implications on the IN efficiency of the treated dust particles are discussed.

Citation: Reitz, P., Spindler, C., Mentel, T. F., Poulain, L., Wex, H., Mildenberger, K., Niedermeier, D., Hartmann, S., Clauss, T., Stratmann, F., Sullivan, R. C., DeMott, P. J., Petters, M. D., Sierau, B., and Schneider, J.: Surface modification of mineral dust particles by sulphuric acid processing: implications for ice nucleation abilities, Atmos. Chem. Phys., 11, 7839-7858, doi:10.5194/acp-11-7839-2011, 2011.
Search ACP
Final Revised Paper
Discussion Paper