Articles | Volume 11, issue 7
https://doi.org/10.5194/acp-11-3359-2011
https://doi.org/10.5194/acp-11-3359-2011
Research article
 | 
08 Apr 2011
Research article |  | 08 Apr 2011

Space-based evaluation of interactions between aerosols and low-level Arctic clouds during the Spring and Summer of 2008

K. Tietze, J. Riedi, A. Stohl, and T. J. Garrett

Related subject area

Subject: Clouds and Precipitation | Research Activity: Remote Sensing | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Satellite remote sensing of regional and seasonal Arctic cooling showing a multi-decadal trend towards brighter and more liquid clouds
Luca Lelli, Marco Vountas, Narges Khosravi, and John Philipp Burrows
Atmos. Chem. Phys., 23, 2579–2611, https://doi.org/10.5194/acp-23-2579-2023,https://doi.org/10.5194/acp-23-2579-2023, 2023
Short summary
Microphysical processes of super typhoon Lekima (2019) and their impacts on polarimetric radar remote sensing of precipitation
Yabin Gou, Haonan Chen, Hong Zhu, and Lulin Xue
Atmos. Chem. Phys., 23, 2439–2463, https://doi.org/10.5194/acp-23-2439-2023,https://doi.org/10.5194/acp-23-2439-2023, 2023
Short summary
The impacts of dust aerosol and convective available potential energy on precipitation vertical structure in southeastern China as seen from multisource observations
Hongxia Zhu, Rui Li, Shuping Yang, Chun Zhao, Zhe Jiang, and Chen Huang
Atmos. Chem. Phys., 23, 2421–2437, https://doi.org/10.5194/acp-23-2421-2023,https://doi.org/10.5194/acp-23-2421-2023, 2023
Short summary
Heavy snowfall event over the Swiss Alps: did wind shear impact secondary ice production?
Zane Dedekind, Jacopo Grazioli, Philip H. Austin, and Ulrike Lohmann
Atmos. Chem. Phys., 23, 2345–2364, https://doi.org/10.5194/acp-23-2345-2023,https://doi.org/10.5194/acp-23-2345-2023, 2023
Short summary
On the global relationship between polarimetric radio occultation differential phase shift and ice water content
Ramon Padullés, Estel Cardellach, and F. Joseph Turk
Atmos. Chem. Phys., 23, 2199–2214, https://doi.org/10.5194/acp-23-2199-2023,https://doi.org/10.5194/acp-23-2199-2023, 2023
Short summary

Cited articles

Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B.: The impact of humidity above stratiform clouds on indirect aerosol climate forcing, Nature, 432, 1014–1017, %\href{http://dx.doi.org/10.1038/nature03174} https://doi.org/10.1038/nature03174, 2004.
Albrecht, B.: Aerosols, cloud microphysics and fractional cloudiness, Science, 245, 1227–1230, %\href{http://dx.doi.org/10.1126/science.245.4923.1227} https://doi.org/10.1126/science.245.4923.1227, 1989.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G. P., and Longo, K. M.: Smoking Rain Clouds over the Amazon, Science, 303, 1337–1342,% \href{http://dx.doi.org/10.1126/science.1092779} https://doi.org/10.1126/science.1092779, 2004.
Avey, L., Garrett, T. J., and Stohl, A.: Evaluation of the aerosol indirect effect using satellite, tracer transport model, and aircraft data from the International Consortium for Atmospheric Research on Transport and Transformation, J. Geophys. Res., 112, D10S33,%\href{http://dx.doi.org/10.1029/2006JD007581} https://doi.org/10.1029/2006JD007581, 2007.
Br{é}on, F. M., Tanr{é}, D., and Generoso, S.: Aerosol effect on cloud droplet size monitored from satellite, Science, 295, 834–838, https://doi.org/10.1126/science.1066434, 2002.
Download
Altmetrics
Final-revised paper
Preprint