Journal cover Journal topic
Atmospheric Chemistry and Physics An Interactive Open Access Journal of the European Geosciences Union

Journal metrics

  • IF value: 5.298 IF 5.298
  • IF 5-year<br/> value: 5.543 IF 5-year
  • SNIP value: 1.809 SNIP 1.809
  • IPP value: 5.253 IPP 5.253
  • SJR value: 3.830 SJR 3.830
  • h5-index value: 89 h5-index 89
Atmos. Chem. Phys., 11, 11723-11731, 2011
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Simulated effects of changes in direct and diffuse radiation on canopy scale isoprene emissions from vegetation following volcanic eruptions
D. J. Wilton1,2, C. N. Hewitt2, and D. J. Beerling1
1Department of Animal and Plant Sciences, University of Sheffield, S10 2TN, UK
2Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

Abstract. Volcanic eruptions can alter the quality of incoming solar irradiance reaching the Earth's surface thereby influencing the interactions between vegetation and the Earth system. Isoprene (C5H8) is a biogenic volatile organic compound emitted from leaves at a rate that is strongly dependent on the received flux of photosynthetically active radiation (PAR). We used a theoretical approach to investigate the potential for volcanic eruptions to change the isoprene flux from terrestrial forests using canopy-scale isoprene emission simulations that vary either the relative or absolute amount of diffuse (Idiff) and direct (Idir) PAR. According to our simulations for a northern hardwood deciduous forest, if the total amount of PAR during summer remains constant while the proportion of Idiff increases, canopy-scale isoprene emissions increase. This effect increases as leaf area index (LAI) increases. Simulating a decrease in the total amount of PAR, and a corresponding increase in Idiff fraction, as measured during the 1992 Pinatubo eruption, changes daily total canopy-scale isoprene emissions from terrestrial vegetation in summertime by +2.8% and −1.4% for LAI of 6 and 2, respectively. These effects have not previously been realized or quantified. Better capturing the effects of volcanic eruptions (and other major perturbations to the atmospheric aerosol content) on isoprene emissions from the terrestrial biosphere, and hence on the chemistry of the atmosphere, therefore may require inclusion of the effects of aerosols they produce on climate and the quality of PAR.

Citation: Wilton, D. J., Hewitt, C. N., and Beerling, D. J.: Simulated effects of changes in direct and diffuse radiation on canopy scale isoprene emissions from vegetation following volcanic eruptions, Atmos. Chem. Phys., 11, 11723-11731, doi:10.5194/acp-11-11723-2011, 2011.
Search ACP
Final Revised Paper
Discussion Paper