Supplementary Material to

Mass-spectrometric identification of primary biological particle markers and application to pristine submicron aerosol measurements in Amazonia

		-	
6			
7 8	J. Schneider ¹ , F. Freutel ¹ , S. R. Zorn ^{1,2} , Q. Chen ² , D. K. Farmer ³ , J. L. Jimenez ³ , S. T. Martin ² , P. Artaxo ⁴ , A. Wiedensohler ⁵ , and S. Borrmann ^{1,6}		
9	[1]	Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz ,Germany	
10 11	[2] Scien	School of Engineering and Applied Sciences and Department of Earth and Planetary aces, Harvard University, Cambridge, MA, USA	
12	[3]	Dept. of Chem. & Biochem. & CIRES, University of Colorado, Boulder, CO, USA	
13	[4]	Applied Physics Department, Institute of Physics, University of São Paulo, Brazil	
14	[5]	Leibniz Institute for Tropospheric Research, Leipzig, Germany	
15	[6]	Institute for Atmospheric Physics, Johannes Gutenberg University Mainz, Germany	
16	Correspondence to: J. Schneider (johannes.schneider@mpic.de)		
17			
18			
19	Details on the evaluation of AMS data from the AMAZE field campaign		
20			
21	1	Modifications made to fragmentation table (SQUIRREL v1.49)	
22	<u>Gas p</u>	bhase correction derived from blank measurements:	
23	frag_	air[29] = 0.845* 0.00736 * frag_air[28]	
24	frag_	CO2[44] = 0.83 * 0.00037 * 1.36 * 1.28 * 1.14 * frag_air[28]	
25	frag_	RH[18] = 0.8 * 0.01 * frag_air[28]	
26	frag_	O16[16] = 1.10 * 0.353 * frag_air[14]	

27	
28	Changes to account for the high contribution of organic nitrates:
29	frag_nitrate[46] = 46,
30	frag_nitrate[30] = 2* frag_nitrate[46],
31	frag_organic[30] = 30,-frag_nitrate[30],-frag_air[30]
32	
33343536	This is based on the following assumptions: m/z 46 is only due to NO ₂ ⁺ from inorganic nitrate, the ratio of m/z 30 to m/z 46 is 2:1 for inorganic ammonium nitrate (Allan et al., 2003; Hogrefe et al., 2004), and therefore the rest of m/z 30 is due to organic nitrate or other organic ions (as CH ₄ N ⁺ and CH ₂ O ⁺). The high-resolution data (12 h averages) show that between 20
37	and 60 % (on average 35 %) of m/z 30 is due to NO ⁺ (see Figure S1, lower panel).
 38 39 40 41 42 	For the calculation of the mass concentration standard relative ionization efficiencies were used (nitrate: 1.1; sulfate: 1.2; organics: 1.4, ammonium: 4; chloride: 1.3). The applied collection efficiency (CE) was 1.0, which is consistent with the intercomparisons with other instruments and the liquid character of the submicron particles (see Chen et al., (2009)
42 43 44	2 Contributions of the marker m/z to the UMR mass peaks:
45 46 47 48	Figure S1 shows the ratios of the marker peak intensities to the respective UMR (unit mass resolution) peak (m/z 30 and 42 for amino acids, upper panel (a); m/z 60, 61, and 73 for carbohydrates, middle panel, (b)). The lower panel (c) shows the ratio of NO ⁺ to the UMR peak at m/z 30.
49	Mean values and standard deviations of the respective fractions:
50	CH_4N^+ (to m/z 30): 0.086 ± 0.030
51	$C_2H_4N^+$ (to m/z 42): 0.098 ± 0.036
52	$C_2H_4O_2^+$ (to m/z 60) 0.800 ± 0.061

- $C_2H_5O_2^+$ (to *m*/*z* 61) 0.0681 ± 0.070
- $C_{3}H_{5}O_{2}^{+}$ (to *m*/*z* 73): 0.669 ± 0.123

55	NO ⁺ (to m/z 30): 0.353 ± 0.087
56	
57	Figure S2 shows the high resolution peak fitting for m/z 30 and 42 for the examples for March
58	05, 12 h (local time), when the amino acid markers showed maximum values.
59	
60	
61	Supplementary Figures
62	
63	

64

Figure S1. Fraction of marker peaks to the total UMR peak at the nominal m/z ratio measured during AMAZE-08. a) amino acid markers, b) carbohydrate markers, c) fraction of NO⁺ to UMR m/z 30.

- 68
- 69

Figure S2. High resolution peak at m/z 30 and m/z 42 from March 05, 2008, 12 h (local time). During this time period CH₄N⁺ and C₂H₄N⁺ contribute significantly more to the respective UMR peak than during other times.