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Abstract. Atmospheric aerosols play a key role in the
Earth’s climate system by scattering and absorbing solar ra-
diation and by acting as cloud condensation nuclei. Satellites
are increasingly used to obtain information on properties of
aerosol particles with a diameter larger than about 100 nm.
However, new aerosol particles formed by nucleation are ini-
tially much smaller and grow into the optically active size
range on time scales of many hours. In this paper we derive
proxies, based on process understanding and ground-based
observations, to determine the concentrations of these new
particles and their spatial distribution using satellite data.
The results are applied to provide seasonal variation of nu-
cleation mode concentration. The proxies describe the con-
centration of nucleation mode particles over continents. The
source rates are related to both regional nucleation and nucle-
ation associated with more restricted sources. The global pat-
tern of nucleation mode particle number concentration pre-
dicted by satellite data using our proxies is compared quali-
tatively against both observations and global model simula-
tions.

1 Introduction

Atmospheric aerosol particles affect the quality of our life in
many different ways. First of all, they influence the Earth’s
radiation balance directly by scattering and absorbing so-
lar radiation, and indirectly by acting as cloud condensa-
tion nuclei (e.g. Forster et al., 2007; Myhre, 2009; Quaas
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et al., 2009). Secondly, aerosol particles modify the inten-
sity and properties of radiation reaching the Earth’s surface,
having direct influences on the vegetation and its interac-
tions with the carbon cycle and atmospheric chemistry (Gu
et al., 2002; Wang et al., 2008). Thirdly, aerosol particles
deteriorate human health and reduce visibility in urban areas
(Pope and Dockery, 2006; Hand and Malm, 2007; Ander-
son, 2009). The various effects of atmospheric aerosol par-
ticles are tightly connected via physical, chemical, meteoro-
logical and biological processes occurring in the atmosphere
and at the atmosphere-biosphere interface (e.g. Arneth et al.,
2010). In addition these natural processes and feedbacks, the
couplings between atmospheric aerosol particles, trace gases,
air quality and climate are affected by human actions, such
as emission policy, forest management and land use change
(Brasseur and Roeckner, 2005; Arneth et al., 2009; Jacob and
Winner, 2009; Raes et al., 2010).

Quantifying the climatic, health and other effects of at-
mospheric aerosol particles requires detailed information on
their physical and chemical properties as well as on their
spatial and temporal variability in the atmosphere. De-
tailed aerosol properties can only be measured in situ, and
a few ground-based measurement networks for this purpose
have been established. These include the Global Atmo-
spheric Watch (GAW) aerosol program (http://www.wmo.
int/gaw/sag/aerosol) and the global AERONET network of
ground-based sun photometers (http://aeronet.gsfc.nasa.gov/
new web/systemdescriptionsoperation.html) as well as var-
ious regional networks, such as the European Monitoring
and Evaluation Programme EMEP (http://www.emep.int/),
EUSAAR (Philippin et al., 2009), and the US Interagency
Monitoring of Protected Visual Environments IMPROVE
(http://vista.cira.colostate.edu/improve/). Information on the
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vertical structure of aerosol properties can be obtained from
aircraft, balloon and lidar measurements and from model
simulations. Remote sensing with satellite instruments pro-
vide aerosol data over large spatial areas, but the information
is limited to particles in the optically-active size range, i.e.
particles larger than about 100 nm in diameter. Passive in-
struments on satellites are currently able to provide column-
integrated aerosol properties, such as the aerosol optical
depth (AOD) at several wavelengths, and space-born lidars
provide vertical profile information on a global scale. Some
instruments provide also microphysical properties such as
the fine and coarse mode fraction, effective radius, and in-
formation on particle shape or aerosol components (see e.g.
Kokhanovsky and de Leeuw, 2009 and de Leeuw et al., 2011
for a comprehensive overview of satellite capabilities). In-
struments with multiple viewing angles provide information
on vertical structures in volcanic ash and fire plumes (e.g.
Kahn et al., 2007, 2008; Muller et al., 2007).

A key phenomenon associated with the atmospheric
aerosol system is the nucleation and subsequent growth
of nucleated aerosol particles. Field measurements have
demonstrated nucleation to be a frequent phenomenon in the
continental boundary layer, as well as in the free troposphere
(Kulmala and Kerminen, 2008, and references therein; Man-
ninen et al., 2010). Direct observational evidence has been
obtained that particles nucleated in the atmosphere are able
to grow into cloud condensation nuclei (CCN) sizes (Li-
havainen et al., 2003; Laaksonen et al., 2005; Wiedensohler
et al., 2009) and participate in cloud droplet formation (Ker-
minen et al., 2005). Global model simulations suggest that
nucleation is very likely the dominant source of particles in
terms of their number concentration in the global atmosphere
(Spracklen et al., 2006, 2010; Yu et al., 2010), and a signifi-
cant contributor to global CCN concentrations (Spracklen et
al., 2008; Merikanto et al., 2009; Pierce and Adams, 2009;
Yu and Luo, 2009). As a result, nucleation has the poten-
tial to influence cloud properties and global radiative forcing
(Wang and Penner, 2008; Makkonen et al., 2009; Merikanto
et al., 2010; Kazil et al., 2010).

Combination of satellite data with either model simula-
tions or in situ observations has been successfully used in
several applications, including surface air quality predictions
(e.g. Martin, 2008; Hoff and Christopher, 2009), evaluation
of emission inventories (e.g. Lamsal et al., 2011; Lee et al.,
2011), and constraining the radiative effects by aerosols (e.g.
Myhre, 2009). Our understanding on atmospheric nucle-
ation relies essentially on field and laboratory experiments,
theoretical calculations and model studies (Kerminen et al.,
2010), with practically no use of satellite data. Satellite mea-
surements of nucleated particles are complicated by their
relatively slow growth to optically active sizes in the at-
mosphere (e.g. Tunved et al., 2006). Therefore, alternative
methods to trace these particles on regional and global scales
using satellite data need to be explored.

In this paper we propose the use of proxies, i.e. parameter-
izations for the concentrations of nucleated particles in terms
of satellite-observable quantities. These proxies are devel-
oped based on our best understanding on the atmospheric
nucleation and growth processes. To the extent possible, the
proxies are evaluated using detailed information from long-
term ground-based measurements. The considered proxies
describe the total number concentration of nucleation mode
particles, that is, particles smaller than about 25–30 nm in
diameter. Our emphasis is put on the continental boundary
layer, since nucleation in that region is both more active and
better understood than nucleation taking place over marine
areas (Vuollekoski et al., 2009; Kazil et al., 2010; O’Dowd
et al., 2010). In terms of the global aerosol number budget,
free-troposphere nucleation is probably extremely important
as well (e.g. Merikanto et al., 2009), but our approach is not
suitable for tracing particles formed in that region due to long
times scales associated with the life cycle of these particles.

2 Proxies for nucleation mode particle number
concentrations

The balance equation for the particle concentration in the nu-
cleation mode,Nnuc, can be written as

dNnuc

dt
= J −Nnuc×CoagS, (1)

whereJ is the nucleation rate and CoagS is the average coag-
ulation sink for the nucleation mode (Kulmala et al., 2001).
The nucleation rate can be connected to the gas-phase con-
centration of the nucleating vapour,C, via the following gen-
eral relation:

J = Knuc×Cn. (2)

HereKnuc is the so-called nucleation coefficient and the ex-
ponentn is related to the nature of the nucleation mechanism
(McMurry and Friedlander, 1979; Kulmala et al., 2006). The
nucleation coefficient takes into account the effect of factors
other than the vapour driving the nucleation rate, including
the ambient temperature and relativity humidity and the pres-
ence of impurities (trace gases, ions) that influence the stabil-
ity of nucleating clusters. The vapors dictating the nucleation
rate are expected be of extremely low volatility, so their gas-
phase concentration can be approximated by the relation

dC

dt
= Q−C ×CS. (3)

HereQ is the source rate of vapourC due to chemical reac-
tions and CS is the condensation sink (Kulmala et al., 2001).

In the following we derive proxies for the nucleation mode
particle number concentration,Nnuc, in two different situa-
tions of boundary-layer nucleation: (1) regional nucleation
driven by photochemistry and occurring typically over spa-
tial scales of hundreds of kilometers (Kulmala and Kerminen,
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2008), and (2) primary nucleation that takes place in the im-
mediate vicinity of highly localized sources, or at scales sub-
stantially smaller than those resolved by large-scale model-
ing frameworks (Luo and Yu, 2011). We also discuss how to
apply these proxies when relying on satellite measurements.

2.1 Regional atmospheric nucleation

The times scales, over which the nucleation mode particle
number concentration and nucleating vapour concentration
reach a pseudo-steady state with respect to sources and sinks
is equal to the inverse of CoagS and CS, respectively (Ker-
minen et al., 2004). In regional nucleation, the assumption of
such a steady state is reasonable. By setting the left hand side
of Eqs. (1) and (3) equal to zero, indicative of the pseudo-
steady state, and by combining Eqs. (1) to (3), we obtain:

Nnuc= Knuc
Qn

CSnCoagS
. (4)

For nucleation mode particles having a mean diameter of
dnuc, the coagulation sink is proportional to the condensation
sink via the following relation (Lehtinen et al., 2007):

CoagS(dnuc) = CS

(
dv

dnuc

)m

. (5)

Heredv is the diameter of the condensing vapor molecule,
i.e. the vapor for which the value of CS is determined, and
the exponentm varies between about 1.5 and 1.9 depending
on the shape of the pre-existing particle number size distribu-
tion. The mean diameter of the nucleation mode,dnuc, varies
with time. By noting this and combining Eqs. (4) and (5), we
then obtain:

Nnuc= K
Qn

CSn+1
. (6)

The factorK now carries the information on both the nu-
cleation coefficient and the size-dependent relation between
CoagS and CS according to Eq. (5).

Atmospheric observations (Riipinen et al., 2007; Kuang et
al., 2008; Paasonen et al., 2010), as well as recent labora-
tory measurements (Metzger et al., 2010; Sipilä et al., 2010),
suggest that the nucleation rate scales to the power 1–2 of the
nucleating vapor concentration. In most cases a clear corre-
lation betweenJ andC is obtained by assuming sulphuric
acid to be the sole driver of the nucleation process, whereas
in some cases an additional vapour, most likely an organic
one, is needed (Paasonen et al., 2010). Gaseous sulphuric
acid (SA) is produced by the oxidation of sulfur dioxide with
the hydroxyl radical:

QSA = k1 [OH][SO2], (7)

whereas condensing organic vapors can be produced by mul-
tiple oxidants (Kroll and Seinfeld, 2008). There are some

indications, however, that the organics most likely to par-
ticipate in nucleation (NUCORG) are those formed prefer-
ably by the OH-initiated oxidation of organic precursor com-
pounds, ORG (Hao et al., 2009):

QNUCORG= k2 [OH][ORG]. (8)

The gaseous OH concentration, rarely available from mea-
surements, is usually directly proportional to the ultraviolet
radiation intensity, UV, in the lower troposphere (Rohrer and
Berresheim, 2006). The performance of UV as a proxy for
the OH-initiated oxidation of SO2 has been demonstrated by
comparing predicted and measured gaseous sulphuric acid
concentrations (Petäjä et al., 2009).

By setting the exponentn to either 1 or 2, by assuming that
[OH] is proportional to UV, and by combining Eqs. (6), (7)
and (8), we obtain four potential proxies forNnuc:

Nn,1 =
UV [SO2]

CS2
, (9)

Nn,2 =
UV2 [SO2]2

CS3
, (10)

Nn,3 =
UV [ORG]

CS2
, (11)

Nn,4 =
UV2 [ORG]2

CS3
. (12)

In analyzing field measurements we may apply the prox-
ies (9) and (10) as such, whereas proxies (11) and (12) re-
quire estimation of either the organic precursor vapor con-
centration, [ORG], or the concentration of organic vapors
participating in nucleation and very initial growth of the nu-
clei, [NUCORG]. If the latter quantity is used, the prox-
ies (11) and (12) will be reduced to the following forms:
Nn,3 = [NUCORG]/CS,Nn,4 = [NUCORG]2/CS. The value
of [NUCORG] can be derived from measured nuclei growth
rates within a factor of about 2 (Paasonen et al., 2010).

2.2 Primary nucleation

The steady-state assumptions made in the previous sub-
section are no longer valid for primary nucleation because
the nucleation process can be extremely rapid, as it is in case
of vehicular emissions, or because the nucleating air parcels
are diluted very rapidly (Kerminen et al., 2004). In urban
areas with primary nucleation resulting from traffic exhaust,
concentrations of nucleation mode particles have been ob-
served to correlate with nitrogen dioxide (NO2) concentra-
tions (e.g. Fernandez-Camacho, 2010). When spread over
larger volumes of ambient air, primary nuclei are expected
to be scavenged by pre-existing larger particles according to
Eq. (1). By assuming a steady state for this process we obtain

Nn,5 =
[NO2]

CS
. (13)
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This is a potential proxy for primary nucleated particles
resulting from traffic emissions, or any other combustion
sources that both emit significant amounts of nitrogen oxides
and initiate primary nucleation in the atmosphere.

In large-scale models, a fraction of the sulfur emissions re-
lated to anthropogenic combustion sources is assumed to be
in the form of primary particles and a fraction of these par-
ticles are often assumed to be nucleation mode particles re-
sulting from sub-grid scale nucleation (see Luo and Yu, 2011,
and references therein). By applying the same reasoning as
above, the following satellite proxy for these nuclei can be
derived:

Nn,6 =
[SO2]

CS
. (14)

This is a potential proxy primary nuclei associated with
strong SO2 emitters such some coal-fired power plants and
smelters.

2.3 Satellite applications

In case of satellite measurements, the proxies given by
Eqs. (9) to (14) need to be simplified further. To start with,
we need to replace CS with a proper column-integrated quan-
tity. Here we propose the aerosol optical depth (AOD) for
this purpose for several reasons. First, the satellite-derived
AOD has been successfully used to trace surface particulate
matter concentrations in air quality applications (Hoff and
Christopher, 2009), in addition to which it has turned out to
be a good tracer for atmospheric cloud condensation nuclei
concentrations (Andreae, 2009). Second, both vapor con-
densation and light scattering are roughly proportional to the
aerosol surface area distribution. The relatively good cor-
relation between CS and aerosol light scattering coefficient
has been confirmed by field measurements (Virkkula et al.,
2011). Third, due to their similar dependence on the parti-
cle size, CS and AOD are expected to respond to changes
in the ambient relative humidity in a similar manner. The
apparent drawback with our approach is that as a column-
integrated property AOD is unable to take into account the
influence of mixed-layer height on CS, nor the effects of el-
evated aerosol layers on the relation between CS and AOD.
The performance of replacing CS with AOD will be investi-
gated in Sect. 3.1.

Observation of sulfur dioxide by satellites is extremely
challenging and usually limited to strongly polluted regions
and major plumes originating from power plants, smelters
or volcanic eruptions (see Veefkind et al., 2011, and refer-
ences therein). Compared with SO2, satellite measurements
of NO2 column burdens typically encountered in the lower
troposphere are much more accurate. The connection be-
tween NO2 and AOD, as retrieved from satellites, has been
shown to reflect different aerosol source types to be consis-
tent with the corresponding connection obtained from global
model simulations (Veefkind et al., 2011).

Few organic compounds can be detected with satellite in-
struments, and the only one having a clear association with
organic aerosol precursors is formaldehyde (HCHO). Col-
umn retrievals of HCHO have been successfully used to con-
strain non-methane hydrocarbon emissions from biogenic
and biomass burning sources (Stavrakou et al., 2009) and,
in some cases, to trace secondary organic aerosol concentra-
tions (Veefkind et al., 2011). These findings suggest that it
might be possible to derive [ORG] in the proxies given by
Eqs. (11) and (12) using satellite data on HCHO. Before do-
ing that, however, the potential connection between HCHO
and ORG should be investigated by in situ field measure-
ments.

The above discussion points out that neither [SO2] nor
[ORG] are usually available from satellite measurements.
One, yet by no means ideal, solution for this problem is to re-
move these two quantities from the proxies given by Eqs. (9)
to (12) by setting them constant, which is equal to assuming
that it is photochemistry rather than the exact concentration
of any trace gas that dictates the nucleation rate. We will dis-
cuss the consequences of this very crude approximation in
Sects. 3.1 and 3.2.

3 Evaluation and preliminary results

In this section, we evaluate selected proxies against in situ
field measurements and then apply them on the global scale
using satellite retrievals. The main purpose of the evalua-
tion, conducted in Sect. 3.1, is to find out how critical it is to
have knowledge on the SO2 concentration when applying the
proxy given by Eq. (9), and whether replacing CS with AOD
can be considered reasonable. In Sect. 3.2 we investigate
the potential of using satellite-derived column SO2 and NO2
concentrations in association with our proxies and, most im-
portantly, discuss the overall performance of the proxy given
Eq. (9) in the global atmosphere after setting the SO2 con-
centration constant and replacing CS with AOD.

3.1 Evaluation of selected proxies against in situ
measurements

The ground-based data used in this work were obtained from
measurements at the SMEAR II station in Hyytiälä, South-
ern Finland, located in the boreal forest (Hari and Kulmala,
2005). Size distributions of 3–1000 nm particles have been
measured at the SMEAR II station continuously since 1996
(e.g. Kulmala et al., 2010). From these data we obtain both
the nucleation mode particle number concentration, as well
as the condensation sink (see Table 1). Here we take nucle-
ation mode particles to be all particles smaller than 25 nm
in mobility diameter. Condensation sink is calculated from
the number size distributions according to the method pre-
sented in Kulmala et al. (2001) accounting for particle hygro-
scopic growth according to the parameterization by Laakso
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Table 1. Mean, median and percentiles (10th and 90th) for the
measured data set used in the comparison of proxy performance
in Hyytiälä. Measured nucleation mode particle concentrations
Nnuc were compared to Eq. (9) (proxy utilizing UVB, SO2, CS and
AOD). The comparisons are shown in Figs. 1 and 2. In the compar-
isons data was averaged to 30 min time resolution.

10th 90th
mean median percentile percentile

Nnuc (cm−3) 1100 320 53 2730
UVB (W m−2) 0.45 0.63 0.20 2.02
SO2 (ppb) 0.18 0.10 0.03 0.36
CS (10−3 s−1) 3.4 2.7 1.0 5.9
AOD 0.10 0.09 0.05 0.18

et al. (2004). SO2 concentration has been measured contin-
uously since 1996 by a fluorescence analyser (TEI 43 BS,
Thermo Environmental, Franklin, MA, USA). The detection
limit of the instrument is 0.1 ppb.

Aerosol optical depth measurements were started at
the SMEAR II station in February 2008. They are
part of the global AERONET network of ground-based
sun photometers (Holben et al., 1998). AOD is mea-
sured at 8 different wavelengths, and here we use the
wavelength of 500 nm as this is closest to the satellite-
based observations used in the global proxies. The se-
quence of measurements, from which AOD and aerosol
microphysical parameters are derived, is described at the
AERONET webpage (http://aeronet.gsfc.nasa.gov/newweb/
systemdescriptionsoperation.html). Sun photometer obser-
vations are available only when the air mass, i.e. the optical
path length through the atmosphere, is equal to 7 or less. Due
to the northern location of Hyytiälä, this excludes the AOD
data availability from about mid-November to mid-February.

Figure 1 (left panel) shows the comparison between mea-
sured nucleation mode particle number concentrations and
those derived from the proxy given by Eq. (9) based on 22
months of in situ measurements during 2008–2010 at the
SMEAR II station. The two quantities are positively cor-
related (r = 0.54), but there is also lot of scatter in the data
points. The main reason for the scatter in this figure is likely
that the proxy assumes a very simple dependence of the nu-
cleation rate,J , on trace gas concentrations and environmen-
tal conditions (nucleating vapour is sulphuric acid;Knuc is
constant andn = 1 in Eq. 2). In reality, the value ofn has
been found to be somewhere between 1 and 2 at SMEAR II
and elsewhere, whereas the value ofKnuc may vary up to an
order of magnitude between individual nucleation events at
any particular site (Riipinen et al., 2007; Kuang et al., 2008;
Paasonen et al., 2010). Another reason for the scatter is the
relatively strong dependence of the nuclei removal rate by
coagulation on the nuclei size (Eq. 5). This makes the life
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Fig. 1. Measured number concentration of nucleation mode par-
ticles (Nnuc, diameter 3–25 nm) as a function of the proxy given
by Eq. (9) (left) and the same proxy with SO2 concentration left
out (right). Each data point represents 30 min averaged data.
The black lines show linear least-squares fit to the data points.
Left: log(y) = 0.92× log(x)−10.69 (r = 0.54, p < 0.001); Right:
log(y) = 0.83× log(x)−1.58 (r = 0.49,p < 0.001).

time and thereby the concentration of nucleation mode parti-
cles sensitive to their growth rate. Nuclei growth rates have
been observed to vary by a factor of about 2–5 at individual
measurement sites (e.g. Manninen et al., 2010).

If we neglect the influence of SO2 concentration variations
on our proxy, i.e. when we set [SO2] to be constant in Eq. (9),
the correlation between the measured and proxy-derived nu-
cleation mode particle number concentration decreases only
slightly from 0.54 to 0.49 (Fig. 1, right panel). The rela-
tively moderate influence of SO2 on the performance of the
proxy might appear surprising, given the strong association
between the nucleation rate and gaseous sulphuric acid con-
centration observed at the SMEAR II station (Riipinen et al.,
2007; Nieminen et al., 2009). On the other hand, this finding
reflects the complexity by which the nucleation mode par-
ticle number concentration depends on the combination of
the whole photochemistry (UV radiation intensity) and sinks
for both nucleated particles and their precursor vapours (CS).
Although knowing the exact magnitude of the SO2 concen-
tration appears not to be crucial at the SMEAR II station, we
would like to stress here that the situation may be totally dif-
ferent in regions having either exceptionally high or very low
SO2 concentration levels.

Perhaps the most crucial of our assumptions is to replace
CS with AOD. Figure 2 demonstrates how this replacement
affects the performance of our proxy in case of our in situ
measurements. The correlation between the measured and
proxy-derived nucleation mode particle number concentra-
tions reduces now down to 0.25 when the SO2 concentration
is taken into account and to 0.23 when it is not. We may
conclude that while our solution to replace CS with AOD is
necessary in order to apply the proxies to a global scale using
satellite data, it is clearly not the ideal one.

www.atmos-chem-phys.net/11/10791/2011/ Atmos. Chem. Phys., 11, 10791–10801, 2011
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Fig. 2. Same as Fig. 1, but with CS replaced with AOD.
Left: log(y) = 0.86× log(x)−7.141 (r = 0.25, p < 0.001); Right:
log(y) = 1.11× log(x)+0.94 (r = 0.23,p < 0.001).

3.2 Preliminary predictions for the global troposphere

SO2 and NO2 concentrations are available from satellite-
based spectrometers such as SCIAMACHY, GOME-2,
TOMS, and OMI. The Total Ozone Mapping Spectrome-
ters (TOMS) onboard several satellite platforms followed up
by Ozone Monitoring Instruments (OMI) have provided a
UV data record of more than 30 yr. In our analysis we use
monthly data of OMI UV irradiance at 310 nm from the year
2006. The primary aerosol products from the MODIS in-
struments aboard the Terra and Aqua satellites are the AOD
and the fine aerosol weighting (FW) at a wavelength of
550 nm. The spatial resolution is 10× 10 km2. In our anal-
ysis we used the monthly mean satellite data available from
the GIOVANNI website (http://disc.sci.gsfc.nasa.gov/). Both
the MODIS AOD (e.g. Levy et al., 2010) and the OMI UV
(e.g. Tanskanen et al., 2007) products have been extensively
validated against ground-based measurements.

To begin with, we investigate whether column SO2 re-
trievals could be used with our proxies despite the detection
limit for this compound by satellites. For this purpose we cal-
culated three-month average SO2 concentration fields from
the satellite data. The concentrations were close to zero, in-
cluding also negative values, and without any clear and justi-
fied large-scale geographical patterns (Fig. 3). Therefore, in
our subsequent proxy analysis only satellite-derived UV and
AOD data are used.

Figure 4 shows the proxy constructed according to Eq. (9)
with the two main assumptions considered in the previous
section, i.e. CS replaced with AOD and [SO2] assumed to be
constant. We do not include the influence of SO2 variations
for the reasons explained above. Four different seasons are
shown: December–February (DJF), March–May (MAM),
June–August (JJA), and September–November (SON). Our
proxy predicts that the Southern Hemisphere is the domi-
nating source for nucleation mode aerosol particles during
DJF and MAM, whereas the Northern Hemisphere domi-
nates during JJA. During SON, active regions for nucleation
are predicted for both hemispheres. The relative importance
of AOD and UV radiation in causing the seasonal cycle of the

Fig. 3. SO2 Column Amount (Middle Troposphere) from OMI L2G
product in Dobson Units for June, July and August in 2006. The
color scale has been restricted; the lowest and highest spots are close
to −2 and 2, respectively.

proxy varies geographically depending on the latitude, which
determines the variability of the UV radiation intensity, and
how the main aerosol source and sinks behave annually.

Many of the patterns shown in Fig. 4 are qualitatively con-
sistent with field observations and our current understanding
on atmospheric nucleation (e.g. Kulmala et al., 2004; Kermi-
nen et al., 2010). These include the extremely frequent and
strong nucleation taking place over South Africa throughout
the year (Vakkari et al., 2011), active yet less intensive nucle-
ation observed over the boreal forest areas during the summer
part of the Northern Hemisphere (Tunved et al., 2006; Dal
Maso et al., 2008), and frequent nucleation taking place in
the South-East Australian rainforest during most parts of the
year (Suni et al., 2008). Field measurements show relatively
frequent nucleation taking place over many parts of Central
and Southern Europe almost throughout the year (Jaatinen
et al., 2009; Manninen et al., 2010), over the North-Eastern
United States outside the winter period (Stanier et al., 2004;
Qian et al., 2007; Pryor et al., 2010), as well as in Beijing,
China (Wu et al., 2007). Our proxy captures some of these
features but totally fails in case of China. A possible reason
for this is the very high SO2 concentration, and thereby very
active role of it, in nucleation taking place over polluted re-
gions of China. Finally, our proxy predicts very high nucle-
ation mode particle number concentrations over large areas
in Eastern South America and in some parts of the Amazon
Basin. While there are practically no field data to confirm
whether the pattern predicted for Eastern South America is
correct or not, measurements conducted in the Amazon Basin
show little evidence for near-surface regional-scale nucle-
ation (Ahlm et al., 2009; Martin et al., 2010). The discrepan-
cies between the proxy predictions and existing observations
in the Amazon Basin, if real, might be related to too low
SO2 concentrations to initiate nucleation there (Martin et al.,
2010). Such a feature is not captured by a proxy assuming
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Fig. 4. The global distribution of the proxy given by Eq. (9), after replacing CS with AOD and assuming SO2 concentration to be constant,
for the different seasons of the year 2006: DJF(a), MAM (b), JJA(c), and SON(d). The unit of UV is mW m−2 nm−1, AOD is unitless.
Moreover, UV/AOD2 is normalized by a factor of 10 000 and the color scale is restricted to between 0 and 2, in order to better show the
geographical patterns.

a constant SO2 concentration. Besides field measurements,
Fig. 4 shows many similarities to global model simulations
made with a nucleation mechanism that is consistent with the
proxy given by Eq. (9) (Spracklen et al., 2006).

Figure 5 shows an example of the proxy for primary nu-
cleated particles (Eq. 13). The most significant concentra-
tions are predicted over the polluted regions in South Africa,
which would add to active regional nucleation predicted for
this region. This is consistent with observations (Vakkari et
al., 2011), even though the relative importance of regional
and primary nucleation may be difficult to separate from
field measurements. Our proxy does not predict any primary
nucleation over the polluted regions of China which, again,
might be due to the important role of SO2 in driving nucle-
ation there.

4 Concluding remarks

We have derived proxies based on physical processes to
estimate the concentration of nucleation mode particles.
The proxies given by Eqs. (9) to (12) describe nucleation
mode particle concentrations resulting from regional-scale

Fig. 5. The proxy given by Eq. (13) for the JJA season of the year
2006. The unit of NO2 is 1015molec cm−2, AOD is unitless. More-
over, NO2/AOD is normalized by a factor of 10 000.
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atmospheric new particle formation, whereas the proxies
given by Eqs. (13) and (14) describe the contribution of
direct emissions of nucleation mode particles (primary nu-
clei). When applied to satellite data, further simplifications in
proxies are currently needed, such as replacing the conden-
sation sink (CS) with the aerosol optical depth (AOD) and
neglecting the influence of sulfur dioxide (SO2) concentra-
tion variations or organic compounds on the nucleation rate.

The global pattern of nucleation mode particle number
concentration predicted by satellite data had similarities to
both observations and global model simulations, but revealed
also several problems associated with our current approach.
Problems were evident in regions where the nucleation rate
is apparently sensitive to the SO2 concentration level, such
as the polluted areas of China and regions with very low
SO2 concentrations. Other problematic locations seem to be
those having a significant contribution from primary nuclei
associated with either NO2 or SO2 emissions. Furthermore,
our current proxies cannot properly take into account the in-
fluence of organic compounds on nucleation and subsequent
particle growth.

In order to be able to improve our results, more sophis-
ticated products from satellite data are clearly needed. The
present products like column NO2 concentration, and even
more so the column SO2 concentration, are not good enough
to distinguish any details in non- or less-polluted conditions.
The satellite proxies would definitely benefit from having an
explicit relation between CS and AOD that would take into
account the influence of mixed layer height, the relative role
of coarse and fine particles on CS and AOD, and the presence
of potential aerosol layers aloft. More work is clearly needed
in which satellite retrieval of organic compounds is combined
with new information from in situ field experiments. The use
of satellite products such as the UV actinic flux would be
better than the surface irradiance used here. Currently such a
data product is not available.

One should also explore the possibility to combine satel-
lite data with information obtained from global or regional
model simulations, as has been done in some other applica-
tions (see Sect. 1). An evident example in this regard would
be to use some sort of time-averaged SO2 concentration field
predicted by a global chemical transport model when apply-
ing the proxies 9 or 10 in different regions and at different
times of the year. Model simulations might also be helpful
in searching for a useful linkage between CS and AOD, or in
attempting to include the influence of organic compounds on
proxy predictions.

With our proxy method we have been able to significantly
contribute to the application of satellite data to obtain in-
formation on aerosol dynamics in the global atmosphere.
In future when this approach will be developed further and
evaluated properly against long-term field observations, this
knowledge might be utilized in global climate studies and
in identifying new regions where continuous ground-based
measurements should be started.
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Mirme, A., Sevanto, S., Twining, J., and Tadros, C.: Formation
and characteristics of ions and charged aerosol particles in a na-
tive Australian Eucalypt forest, Atmos. Chem. Phys., 8, 129–139,
doi:10.5194/acp-8-129-2008, 2008.

Tanskanen, A., Lindfors, A., M̈aätẗa, A., Krotkov, N., Herman,
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