Articles | Volume 10, issue 20
https://doi.org/10.5194/acp-10-9915-2010
https://doi.org/10.5194/acp-10-9915-2010
20 Oct 2010
 | 20 Oct 2010

Spatial, temporal, and vertical variability of polar stratospheric ozone loss in the Arctic winters 2004/2005–2009/2010

J. Kuttippurath, S. Godin-Beekmann, F. Lefèvre, and F. Goutail

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Stratosphere | Science Focus: Chemistry (chemical composition and reactions)
The historical ozone trends simulated with the SOCOLv4 and their comparison with observations and reanalyses
Arseniy Karagodin-Doyennel, Eugene Rozanov, Timofei Sukhodolov, Tatiana Egorova, Jan Sedlacek, William Ball, and Thomas Peter
Atmos. Chem. Phys., 22, 15333–15350, https://doi.org/10.5194/acp-22-15333-2022,https://doi.org/10.5194/acp-22-15333-2022, 2022
Short summary
Indicators of the ozone recovery for selected sites in the Northern Hemisphere mid-latitudes derived from various total column ozone datasets (1980–2020)
Janusz Krzyścin
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-680,https://doi.org/10.5194/acp-2022-680, 2022
Revised manuscript accepted for ACP
Short summary
Atmospheric impacts of chlorinated very short-lived substances over the recent past – Part 1: Stratospheric chlorine budget and the role of transport
Ewa M. Bednarz, Ryan Hossaini, Martyn P. Chipperfield, N. Luke Abraham, and Peter Braesicke
Atmos. Chem. Phys., 22, 10657–10676, https://doi.org/10.5194/acp-22-10657-2022,https://doi.org/10.5194/acp-22-10657-2022, 2022
Short summary
Effects of reanalysis forcing fields on ozone trends and age of air from a chemical transport model
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Andreas Chrysanthou, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 22, 10635–10656, https://doi.org/10.5194/acp-22-10635-2022,https://doi.org/10.5194/acp-22-10635-2022, 2022
Short summary
The influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th century
Ville Maliniemi, Pavle Arsenovic, Annika Seppälä, and Hilde Nesse Tyssøy
Atmos. Chem. Phys., 22, 8137–8149, https://doi.org/10.5194/acp-22-8137-2022,https://doi.org/10.5194/acp-22-8137-2022, 2022
Short summary

Cited articles

Amraoui, L. El, Semane, N., Peuch, V.-H., and Santee, M. L.: Investigation of dynamical processes in the polar stratospheric vortex during the unusually cold winter 2004/2005, Geophys. Res. Lett., 35, L03803, https://doi.org/10.1029/2007GL031251, 2008.
Burkholder, J. B., Orlando, J. J., and Howard, C. J.: Ultraviolet absorption cross-sections of Cl2O2 between 210 and 410 nm, J. Phys. Chem., 94, 687–695, 1990.
Butz, A., Bösch, H., Camy-Peyret, C., Dorf, M., Engel, A., Payan, S., and Pfeilsticker, K.: Observational constraints on the kinetics of the ClO-BrO and ClO-ClO ozone loss cycles in the Arctic winter stratosphere, Geophys. Res. Lett., 34, L05801, https://doi.org/10.1029/2006GL028718, 2007.
Davies, S., Chipperfield, M. P., Carslaw, K. S., et al.: Modelling the effect of denitrification on Arctic ozone depletion during winter 1999/2000, J. Geophys. Res., 107, 8322, https://doi.org/10.1029/2001JD000445, 2002.
Feng, W., Chipperfield, M. P., Davies, S., von der Gathen, P., Kyrö, E., Volk, C. M., Ulanovsky, A., and Belyaev, G.: Large chemical ozone loss in 2004/2005 Arctic winter/spring, Geophys. Res. Lett., 34, L09803, https://doi.org/10.1029/2006GL029098, 2007.
Download
Altmetrics
Final-revised paper
Preprint