Atmos. Chem. Phys., 10, 8601-8616, 2010
www.atmos-chem-phys.net/10/8601/2010/
doi:10.5194/acp-10-8601-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first determination of hygroscopic and cloud condensation nuclei activation properties
D. F. Zhao1,2, A. Buchholz2, Th. F. Mentel2, K.-P. Müller2, J. Borchardt2, A. Kiendler-Scharr2, C. Spindler2, R. Tillmann2, A. Trimborn3, T. Zhu1, and A. Wahner2
1State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
2Forschungszentrum Jülich, Institut für Chemie und Dynamik der Geosphäre − 2: Troposphäre, 52425 Jülich, Germany
3Aerodyne Research Inc., 45 Manning Rd, Billerica, MA 01821, USA

Abstract. Atmospheric mineral aerosols contain CaCO3 as a reactive component. A novel method to produce CaCO3 aerosol was developed by spraying Ca(HCO3)2 solution, which was generated from a CaCO3 suspension and CO2. By aerosol mass spectrometry the freshly sprayed and dried aerosol was characterized to consist of pure Ca(HCO3)2 which under annealing in a tube furnace transformed into CaCO3. Transmission Electron Microscopy demonstrated that the particles produced were spherical. The method was able to generate aerosol of sufficient concentration and proper size for the study of physiochemical properties and investigations of heterogeneous reactions of mineral aerosol.

The dried Ca(HCO3)2 particles were somewhat more hygroscopic than CaCO3 particles. However, during humidification a restructuring took place and ∼2/3 of the Ca(HCO3)2 was transformed to CaCO3. The mixed Ca(HCO3)2/CaCO3(s) particles were insoluble with a growth factor of 1.03 at 95% (hygroscopicity parameter κ=0.011±0.007) relative humidity. This compares to a corresponding growth factor of 1.01 for CaCO3(s) (κ=0.0016±0.0004). Mass spectrometric composition analysis, restructuring, and insolubility of the mixed particles suggested that solid Ca(HCO3)2(s) was observed. This would be in contrast to the current belief that Ca(HCO3)2(s) is thermodynamically instable. The CCN activity of Ca(HCO3)2(s) aerosol (κ≈0.15) is remarkably higher than that of CaCO3 aerosol (κ=0.0019±0.0007) and less than that of Ca(NO3)2. The noticeable but limited solubility of Ca(HCO3)2 of ≈0.01 mol/l explains limited hygroscopic growth and good CCN activity.

Experiments in the Large Jülich Aerosol Chamber indicated that Ca(HCO3)2(s) could exist for several hours under dry atmospheric conditions. However, it was likely buried in a protective layer of CaCO3(s). We conclude that Ca(HCO3)2 may be formed in the atmosphere in cloud droplets of activated mineral dust by reaction of CaCO3 with CO2 and H2O. The presence of Ca(HCO3)2 and as a consequence an enhanced CCN activity may alter the influence of mineral aerosol on global climate.


Citation: Zhao, D. F., Buchholz, A., Mentel, Th. F., Müller, K.-P., Borchardt, J., Kiendler-Scharr, A., Spindler, C., Tillmann, R., Trimborn, A., Zhu, T., and Wahner, A.: Novel method of generation of Ca(HCO3)2 and CaCO3 aerosols and first determination of hygroscopic and cloud condensation nuclei activation properties, Atmos. Chem. Phys., 10, 8601-8616, doi:10.5194/acp-10-8601-2010, 2010.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share