Atmos. Chem. Phys., 10, 6669-6684, 2010
www.atmos-chem-phys.net/10/6669/2010/
doi:10.5194/acp-10-6669-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species
S. Park1, E. L. Atlas2, R. Jiménez1, B. C. Daube1, E. W. Gottlieb1, J. Nan1, D. B. A. Jones3, L. Pfister4, T. J. Conway5, T. P. Bui4, R.-S. Gao5, and S. C. Wofsy1
1Dept. of Earth and Planetary Sciences and the School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
2University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
3Dept. of Physics, University of Toronto, Toronto, Ontario, Canada
4NASA, Ames Research Center, Moffett Field, CA, USA
5NOAA, Earth System Research Laboratory, Boulder, CO, USA

Abstract. Rates for large-scale vertical transport of air in the Tropical Tropopause Layer (TTL) were determined using high-resolution, in situ observations of CO2 concentrations in the tropical upper troposphere and lower stratosphere during the NASA Tropical Composition, Cloud and Climate Coupling (TC4) campaign in August 2007. Upward movement of trace gases in the deep tropics was notably slower in TC4 than during the Costa Rica AURA Validation Experiment (CR-AVE), in January 2006. Transport rates in the TTL were combined with in situ measurements of chlorinated and brominated organic compounds from whole air samples to determine chemical loss rates for reactive chemical species, providing empirical vertical profiles for 24-h mean concentrations of hydroxyl radicals (OH) and chlorine atoms in the TTL. The analysis shows that important short-lived species such as CHCl3, CH2Cl2, and CH2Br2 have longer chemical lifetimes than the time for transit of the TTL, implying that these species, which are not included in most models, could readily reach the stratosphere and make significant contributions of chlorine and/or bromine to stratospheric loading.

Citation: Park, S., Atlas, E. L., Jiménez, R., Daube, B. C., Gottlieb, E. W., Nan, J., Jones, D. B. A., Pfister, L., Conway, T. J., Bui, T. P., Gao, R.-S., and Wofsy, S. C.: Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species, Atmos. Chem. Phys., 10, 6669-6684, doi:10.5194/acp-10-6669-2010, 2010.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share