Articles | Volume 10, issue 10
https://doi.org/10.5194/acp-10-4491-2010
https://doi.org/10.5194/acp-10-4491-2010
18 May 2010
 | 18 May 2010

Marine boundary layer over the subtropical southeast Pacific during VOCALS-REx – Part 1: Mean structure and diurnal cycle

D. A. Rahn and R. Garreaud

Abstract. Atmospheric subsidence over the subtropical southeast Pacific (SEP) leads to a low-level anticyclonic circulation, a cool sea surface and a cloud-topped marine boundary layer (MBL). Observations in this region from a major field campaign during October and November 2008, the VOCALS Regional Experiment, provide ample data to characterize the lower atmospheric features over the SEP. The observations are also useful to test the ability of an area-limited, high-resolution atmospheric model to simulate the SEP conditions. Observations and model-results (where appropriate) improve the characterization of the mean state (Part 1) and variability (Part 2) of the lower troposphere including circulation, MBL characteristics and the upsidence wave.

Along 20° S the MBL is generally deeper offshore (1600 m at 85° W) but there is also considerable variability. MBL depth and variability decrease towards the coast and maximum inversion strength is detected between 74–76° W. Weather Research and Forecasting (WRF) simulations underestimate MBL height the most near the coast but improve offshore. Southeasterly trades prevail within the MBL although the wind speed decreases toward the coast. Above the MBL along the coast of Chile, flow is northerly, has a maximum at 3 km, and extends westward to ~74° W, apparently due to the mechanical blocking exerted by the Andes upon the westerly flow aloft. Mean MBL features along northern Chile (18–25° S) are remarkably similar (e.g., MBL depth just below 1 km) in spite of different SST. Observed diurnal cycles of the temperature at the coast and further offshore exhibit a number of conspicuous features that are consistent with the southwestward propagation of an upsidence wave initiated during late evening along the south Peru coast. Furthermore, the passage of the vertical motion results in either constructive or deconstructive interference with the radiatively-forced diurnal cycle of MBL depth. Interference is clearly seen in the soundings at Iquique which are driven by a strong upsidence wave contrary to the radiation-driven cycle, leading to a diurnal cycle opposite of the other sites. Because WRF simulations have a lower MBL height, the speed of the simulated gravity wave is slower than observations and accounts for most of the discrepancy between observed and simulated phase speeds.

Download
Altmetrics
Final-revised paper
Preprint