Atmos. Chem. Phys., 10, 11189-11208, 2010
www.atmos-chem-phys.net/10/11189/2010/
doi:10.5194/acp-10-11189-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Observations of ozone production in a dissipating tropical convective cell during TC4
G. A. Morris1, A. M. Thompson2, K. E. Pickering3, S. Chen2, E. J. Bucsela4, and P. A. Kucera5
1Dept. of Physics and Astronomy, Valparaiso University, Valparaiso, IN, USA
2Dept. of Meteorology, Pennsylvania State University, University Park, PA, USA
3Atmospheric Chemistry and Dynamics Branch, Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, MD, USA
4SRI International, Menlo Park, CA, USA
5Research Applications Laboratory, NCAR, Boulder, CO, USA

Abstract. From 13 July–9 August 2007, 25 ozonesondes were launched from Las Tablas, Panama as part of the Tropical Composition, Cloud, and Climate Coupling (TC4) mission. On 5 August, a strong convective cell formed in the Gulf of Panama. World Wide Lightning Location Network (WWLLN) data indicated 563 flashes (09:00–17:00 UTC) in the Gulf. NO2 data from the Ozone Monitoring Instrument (OMI) show enhancements, suggesting lightning production of NOx. At 15:05 UTC, an ozonesonde ascended into the southern edge of the now dissipating convective cell as it moved west across the Azuero Peninsula. The balloon oscillated from 2.5–5.1 km five times (15:12–17:00 UTC), providing a unique examination of ozone (O3) photochemistry on the edge of a convective cell. Ozone increased at a rate of ~1.6–4.6 ppbv/hr between the first and last ascent, resulting cell wide in an increase of ~(2.1–2.5) × 106 moles of O3. This estimate agrees to within a factor of two of our estimates of photochemical lightning O3 production from the WWLLN flashes, from the radar-inferred lightning flash data, and from the OMI NO2 data (~1.2, ~1.0, and ~1.7 × 106 moles, respectively), though all estimates have large uncertainties. Examination of DC-8 in situ and lidar O3 data gathered around the Gulf that day suggests 70–97% of the O3 change occurred in 2.5–5.1 km layer. A photochemical box model initialized with nearby TC4 aircraft trace gas data suggests these O3 production rates are possible with our present understanding of photochemistry.

Citation: Morris, G. A., Thompson, A. M., Pickering, K. E., Chen, S., Bucsela, E. J., and Kucera, P. A.: Observations of ozone production in a dissipating tropical convective cell during TC4, Atmos. Chem. Phys., 10, 11189-11208, doi:10.5194/acp-10-11189-2010, 2010.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share